10 Bài tập Chứng minh ba đường thẳng đồng quy, ba điểm thẳng hàng (có lời giải)
42 người thi tuần này 4.6 451 lượt thi 10 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 5 đề thi Cuối kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 5 đề thi Cuối kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 2
Bộ 5 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
6 câu Trắc nghiệm Toán 7 Bài 3: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh có đáp án (Vận dụng)
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. thẳng hàng;
B. trùng nhau;
C. nằm trên đáy BC;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A

Do ∆ABC cân tại A nên AB = AC.
Suy ra A thuộc đường trung trực của BC (1)
Do ∆DBC cân tại D nên DB = DC.
Suy ra D thuộc đường trung trực của BC (2)
Do ∆EBC cân tại E nên EB = EC.
Suy ra E thuộc đường trung trực của BC (3)
Từ (1), (2) và (3) suy ra ba điểm A, D, E cùng nằm trên đường trung trực của BC.
Mà ba tam giác cân ABC, DBC, EBC có chung đáy BC và phân biệt nên A, D, E phân biệt.
Do đó ba điểm A, D, E thẳng hàng.
Câu 2
A. Chỉ có (I) đúng;
B. Chỉ có (II) đúng;
C. Cả (I) và (II) đều đúng;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C

Vì ∆ABC cân tại A nên AB = AC, do đó A nằm trên đường trung trực của BC (1)
Xét ∆ABD (vuông tại B) và ∆ACD (vuông tại C) có:
AB = AC (do ∆ABC cân tại A);
AD là cạnh chung
Do đó ∆ABD = ∆ACD (cạnh huyền – cạnh góc vuông)
Suy ra DB = DC (hai cạnh tương ứng)
Từ đó ta có D nằm trên đường trung trực của BC (2)
Mặt khác, M là trung điểm của BC nên M cũng nằm trên đường trung trực của BC (3)
Từ (1), (2) và (3) ta có ba điểm A, M, D nằm trên đường trung trực của BC
Suy ra ba điểm A, M, D thẳng hàng.
Vậy cả hai khẳng định (I) và (II) đều đúng. Ta chọn phương án C.
Câu 3
A. ∆DAK = ∆DCK;
B. AD là đường trung trực của BC;
C. Hai đường trung trực của AB và AC vuông góc với nhau;
D. Ba điểm B, D, C thẳng hàng.
Lời giải

Câu 4
A. Chỉ (I) và (II) là đúng;
B. Chỉ (II) và (III) là đúng;
C. Chỉ (I) và (III) là đúng;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D

Vì BD = BA do đó tam giác ABD cân tại B.
Nên BM là đường phân giác cũng là đường trung trực của cạnh AD trong tam giác.
Suy ra BM ⊥ AD (1)
Kéo dài AK cắt DH tại J.
Khi đó ∆ADJ có AH ⊥ DJ, DK ⊥ AJ và AH cắt DK tại M nên M là trực tâm của ∆ADJ.
Suy ra JM ⊥ AD (2)
Từ (1) và (2) suy ra ba điểm B, M, J thẳng hàng hay AK, BM, DH là ba đường đồng quy.
Do BM là đường trung trực của AD nên MA = MD.
Xét ∆BAM và ∆BDM có:
BM là cạnh chung; BA = BD (giả thiết); MA = MD (chứng minh trên)
Do đó ∆BAM = ∆BDM (c.c.c)
Suy ra (hai góc tương ứng)
Mà nên hay MD ⊥ BC, tức DK ⊥ BC.
Lại có DK ⊥ AK tại K nên AK // BC.
Vậy cả (I), (II) và (III) đều đúng. Ta chọn phương án D.
Câu 5
A. OM, AC, BD đồng quy;
B. OM là đường trung trực của đoạn thẳng AB.
C. Cả A và B đều đúng.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D

Xét ∆AOM và ∆BOM có:
OM là cạnh chung;
OA = OB (giả thiết)
Do đó ∆AOM = ∆BOM (cạnh huyền – cạnh góc vuông).
Suy ra MA = MB (hai cạnh tương ứng).
Nên M nằm trên đường trung trực của AB.
Lại có OA = OB nên O nằm trên đường trung trực của AB.
Do đó OM là đường trung trực của AB, nên OM ⊥ AB.
Xét ∆AOB có ba đường cao OM, AC, BD nên ba đường này đồng quy tại một điểm.
Vậy cả A và B đều là khẳng định đúng.
Khi đó phương án D là sai. Ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. E, O, F thẳng hàng;
B. E, O, F cách đều ba cạnh của tam giác;
C. E, O, F cách đều ba đỉnh của tam giác.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. Q cách đều ba đỉnh của ∆NPR;
B. Q cách đều ba cạnh của ∆NPR;
C. MN, PQ và RQ đồng quy.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. BM ⊥ HK;
B. Ba đường BM, DH, AK đồng quy;
C. Cả A và B đều đúng;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. Ba điểm A, K, O thẳng hàng;
B. AK là đường trung trực của BC;
C. AK và các đường trung trực của AD và AE đồng quy.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.