5 câu Trắc nghiệm Các trường hợp bằng nhau của tam giác vuông có đáp án (Nhận biết)
31 người thi tuần này 4.6 1.4 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 02
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Xét ∆ABC và ∆DEF, có:
.
AB = DE (giả thiết)
BC = EF (giả thiết)
Do đó ∆ABC = ∆DEF (c.g.c)
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
⦁ Xét phương án A:
Xét ∆ABC và ∆A’B’C’, có:
.
AB = A’B’ (giả thiết)
BC = B’C’ (giả thiết)
Do đó ∆ABC = ∆A’B’C’ (c.g.c)
Vì vậy phương án A có chứa hai tam giác vuông bằng nhau.
⦁ Xét phương án B:
Xét ∆A’B’C’ và ∆ABC, có:
.
B’C’ = BC (giả thiết)
(giả thiết)
Do đó ∆A’B’C’ = ∆ABC (g.c.g)
Vì vậy phương án B có chứa hai tam giác vuông bằng nhau.
⦁ Xét phương án C:
Xét ∆ABC và ∆A’B’C’, có:
.
AC = A’C’ (giả thiết)
(giả thiết)
Do đó ∆ABC = ∆A’B’C’ (cạnh huyền – góc nhọn)
Vì vậy phương án C có chứa hai tam giác vuông bằng nhau.
⦁ Xét phương án D:
Xét ∆ABC và ∆A’B’C’, có:
.
(giả thiết)
(giả thiết)
Do đó ∆ABC và ∆A’B’C’ không bằng nhau do không có trường hợp bằng nhau góc – góc – góc.
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta thấy MP, XZ lần lượt là cạnh góc vuông của ∆MNP và ∆XYZ.
Do đó để ∆MNP = ∆XYZ theo trường hợp cạnh huyền – cạnh góc vuông thì cần thêm điều kiện hai cạnh huyền của hai tam giác đó bằng nhau. Nghĩa là, MN = XY.
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
⦁ Xét phương án A:
Xét ∆ABC và ∆PQR, có:
.
(giả thiết)
(giả thiết)
Do đó ∆ABC và ∆PQR không bằng nhau do không có trường hợp góc – góc – góc.
⦁ Xét phương án B:
Xét ∆ABC và ∆PQR, có:
.
AB = PQ (giả thiết)
(giả thiết)
Do đó ∆ABC = ∆PQR (g.c.g).
⦁ Xét phương án C:
Xét ∆ABC và ∆PQR, có:
.
BC = QR (giả thiết)
(giả thiết)
Do đó ∆ABC = ∆PQR (cạnh huyền – góc nhọn)
⦁ Xét phương án D:
Xét ∆ABC và ∆PQR, có:
.
BC = QR (giả thiết)
AC = PR (giả thiết)
Do đó ∆ABC = ∆PQR (cạnh huyền – cạnh góc vuông)
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Phương án A: Phát biểu của trường hợp cạnh góc vuông – góc nhọn kề (hay g.c.g).
Phương án B: Phát biểu của trường hợp cạnh huyền – cạnh góc vuông.
Phương án C: Phát biểu của trường hợp cạnh huyền – góc nhọn.
Vậy ta chọn phương án D.
275 Đánh giá
50%
40%
0%
0%
0%