Câu hỏi:

31/10/2022 352 Lưu

Cho ∆MNP vuông tại P và ∆XYZ vuông tại Z có MP = XZ. Để ∆MNP = ∆XYZ theo trường hợp cạnh huyền – cạnh góc vuông thì cần thêm điều kiện gì?

A. MN = XY;                 

B. MN = YZ;                  

C. NMP^=ZYX^;            

D. MNP^=XYZ^.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta thấy MP, XZ lần lượt là cạnh góc vuông của ∆MNP và ∆XYZ.

Do đó để ∆MNP = ∆XYZ theo trường hợp cạnh huyền – cạnh góc vuông thì cần thêm điều kiện hai cạnh huyền của hai tam giác đó bằng nhau. Nghĩa là, MN = XY.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. A^=P^=90°,  B^=Q^,  C^=R^;            

B. A^=P^=90°, AB = PQ, B^=Q^;                

C. A^=P^=90°, BC = QR, C^=R^;                

D. A^=P^=90°, BC = QR, AC = PR.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Xét phương án A:

Xét ∆ABC và ∆PQR, có:

A^=P^=90°.

B^=Q^ (giả thiết)

C^=R^ (giả thiết)

Do đó ∆ABC và ∆PQR không bằng nhau do không có trường hợp góc – góc – góc.

Xét phương án B:

Xét ∆ABC và ∆PQR, có:

A^=P^=90°.

AB = PQ (giả thiết)

B^=Q^ (giả thiết)

Do đó ∆ABC = ∆PQR (g.c.g).

Xét phương án C:

Xét ∆ABC và ∆PQR, có:

A^=P^=90°.

BC = QR (giả thiết)

C^=R^ (giả thiết)

Do đó ∆ABC = ∆PQR (cạnh huyền – góc nhọn)

Xét phương án D:

Xét ∆ABC và ∆PQR, có:

A^=P^=90°.

BC = QR (giả thiết)

AC = PR (giả thiết)

Do đó ∆ABC = ∆PQR (cạnh huyền – cạnh góc vuông)

Vậy ta chọn phương án A.

Câu 2

A. Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau;               

B. Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau;      

C. Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau;            

D. Cả A, B, C đều đúng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Phương án A: Phát biểu của trường hợp cạnh góc vuông – góc nhọn kề (hay g.c.g).

Phương án B: Phát biểu của trường hợp cạnh huyền – cạnh góc vuông.

Phương án C: Phát biểu của trường hợp cạnh huyền – góc nhọn.

Vậy ta chọn phương án D.

Câu 3

A. cạnh huyền – cạnh góc vuông;                 

B. cạnh huyền – góc nhọn;                 

C. cạnh – góc – cạnh;               

D. góc – cạnh – góc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP