10 Bài tập Sử dụng tính chất trực tâm của tam giác để chứng minh hai đường thẳng vuông góc, ba đường thẳng đồng quy (có lời giải)
38 người thi tuần này 4.6 471 lượt thi 10 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 6 (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 23. Đại lượng tỉ lệ nghịch (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 22. Đại lượng tỉ lệ thuận (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 21. Tính chất của dãy tỉ số bằng nhau (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 20. Tỉ lệ thức (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Ôn tập chương 5 (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 19. Biểu đồ đoạn thẳng (Đúng sai - Trả lời ngắn) có đáp án
20 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 18. Biểu đồ hình quạt tròn (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
A. NJ ⊥ MK;
B. MN ⊥ IN;
C. KN ⊥ MI;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C

Ta có: MJ ⊥ IK tại J nên MJ là đường cao của ∆MIK.
Mà N nằm trên đường thẳng qua I và vuông góc với MK nên IN ⊥ MK.
Do đó IN là đường cao của ΔMIK.
Xét ∆MIK có hai đường cao IN và MJ cắt nhau tại N nên N là trực tâm của ΔMIK.
Suy ra KN là đường cao của ∆MIK hay KN ⊥ MI.
Câu 3
A. NK ⊥ MP;
B. MK ⊥ NP;
C. K là trực tâm của tam giác MNP;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D

Xét ∆MPN cân tại M có MS là đường phân giác (giả thiết) nên MS đồng thời là đường cao. Suy ra MS ⊥ PN
∆MPN có MS ⊥ PN, PQ ⊥ MN và MS cắt PQ tại K nên K là trực tâm của ∆MPN.
Do đó NK ⊥ MP.
Vậy cả A, B, C đều là khẳng định đúng. Ta chọn phương án D.
Câu 4
A. DK ⊥ AC;
B. AK ⊥ BD;
C. AK, DK, BC đồng quy;
Lời giải
Hướng dẫn giải:
Đáp án đúng là:D

Vì AB ⊥ AC và DK // AB nên DK ⊥ AC.
Xét ∆ADC có: DK ⊥ AC, CH ⊥ AD và DK cắt CH tại K nên K là trực tâm ∆ADC.
Suy ra AK ⊥ CD và ba đường thẳng AK, DK, BC đồng quy.
Vậy cả A, B, C đều là khẳng định đúng. Ta chọn phương án D.
Câu 5
A. I là giao điểm ba trung trực của ∆AHC;
B. KD // AC;
C. BK ⊥ AD;
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D

⦁ Trong ∆AHC vuông tại H, dễ dàng chứng minh được
Do đó I cách đều ba đỉnh của tam giác nên I là giao điểm ba trung trực của ∆AHC.
⦁ Ta có AH ⊥ BC, DI ⊥ BC suy ra AH // DI nên (so le trong);
AH ⊥ BC, IK ⊥ AK suy ra IK // BC nên (so le trong).
Xét ∆KHD và ∆DIK có:
KD là cạnh chung;
Do đó ∆KHD = ∆DIK (g.c.g).
Suy ra HK = ID, HD = IK (các cặp cạnh tương ứng)
Xét ∆KDH (vuông tại H) và ∆ICD (vuông tại D) có:
HK = ID (chứng minh trên);
HD = DC (do DI là trung trực của HC).
Do đó ∆KDH = ∆IDC (hai cạnh góc vuông).
Suy ra (hai góc tương ứng)
Mà hai góc này ở vị trí đồng vị nên DK // AC.
Lại có AB ⊥ AC nên DK ⊥ AB
Trong ∆ABD có: AH ⊥ BD (giả thiết), DK ⊥ AB và AH cắt DK tại K
Do đó K là trực tâm ∆ABD, suy ra BK ⊥ AD.
Câu 6
A. 3;
B. 2;
C. 1;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. NS // ML;
B. NS ⊥ ML;
C. NS ≡ ML;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. Ba đường AE, DM và BC đồng quy tại C;
B. AE ⊥ BD;
C. BC ⊥ AD;
D. Cả A, B, C đều là khẳng định sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. AK ⊥ CD;
B. CH ⊥ AD;
C. DK ⊥ AC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. Chỉ (I) sai;
B. Chỉ (II) sai;
C. Cả (I), (II) đúng;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
