Câu hỏi:
04/12/2023 421Cho ∆MNP cân tại M, đường cao PQ cắt đường phân giác MS ở K. Khẳng định nào sau đây là sai?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D
Xét ∆MPN cân tại M có MS là đường phân giác (giả thiết) nên MS đồng thời là đường cao. Suy ra MS ⊥ PN
∆MPN có MS ⊥ PN, PQ ⊥ MN và MS cắt PQ tại K nên K là trực tâm của ∆MPN.
Do đó NK ⊥ MP.
Vậy cả A, B, C đều là khẳng định đúng. Ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác MNP vuông tại M (MP < MN). Trên cạnh MN lấy điểm Q sao cho MQ = MP, trên tia đối của tia MP lấy điểm R sao cho MR = MN. Gọi S là giao điểm PQ và RN. Cho các khẳng định sau:
(I) PS ⊥ NR;
(II) MN, PS và RQ đồng quy tại Q.
Khẳng định nào sau đây là đúng?
Câu 2:
Cho ∆ABC vuông tại A, đường cao AH, lấy I là trung điểm AC. Gọi K và D thứ tự là trung điểm của AH và HC. Khẳng định nào sau đây là sai?
Câu 3:
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Lấy điểm K thuộc đoạn thẳng HC. Qua K kẻ đường thẳng song song với AB, cắt AH tại D. Khẳng định nào sau đây là đúng nhất?
Câu 4:
Cho ∆ABC vuông tại A có đường cao AH. Gọi M là trung điểm của AH, qua M kẻ đường thẳng song song với AB. Gọi K là giao điểm của MN và AH.
Cho các khẳng định sau:
(I) CM là đường cao của ∆ANC;
(II) CM ⊥ AN;
(III) NK, AH và CM đồng quy tại M.
Có bao nhiêu khẳng định đúng?
Câu 5:
Cho ∆ABC vuông cân tại A, lấy E thuộc cạnh AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AE. Cho các khẳng định sau:
(I) ∆ADE vuông cân tại A.
(II) E là trực tâm của ∆BCD.
(III) BE ⊥ CD.
Có bao nhiêu khẳng định đúng?
Câu 6:
Cho tam giác LMN nhọn và điểm S nằm trong tam giác, LS cắt MN tại P, MS cắt LN tại Q. Nếu LP ⊥ MN, MQ ⊥ LN thì vị trí của NS và ML là
về câu hỏi!