Câu hỏi:
12/07/2024 530Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau”.
Chứng minh định lí.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải:
+ Ta có \[\widehat {aAB} = \widehat {ABb'}\] (giả thiết)
Mà \[\widehat {aAB} = \widehat {cAa'}\] (hai góc đối đỉnh)
Suy ra \[\widehat {cAa'} = \widehat {ABb'}\] (vì cùng bằng \[\widehat {aAB}\]).
+ Ta có \[\widehat {aAB} = \widehat {ABb'}\](giả thiết)
Mà \[\widehat {ABb'} = \widehat {bBc'}\] (hai góc đối đỉnh)
Suy ra \[\widehat {aAB} = \widehat {bBc'}\] (vì cùng bằng \[\widehat {ABb'}\]).
+ Ta có \[\widehat {aAc}\] + \[\widehat {BAa}\] = 180° (hai góc kề bù)
Và \[\widehat {bBA}\] + \[\widehat {ABb'}\] = 180° (hai góc kề bù)
Mà \[\widehat {aAB} = \widehat {ABb'}\]
Suy ra \[\widehat {aAc}\] = \[\widehat {bBA}\].
+ Ta có \[\widehat {a'AB}\] = \[\widehat {aAc}\] (hai góc đối đỉnh)
\[\widehat {b'Bc'}\] = \[\widehat {bBA}\] (hai góc đối đỉnh)
Mà \[\widehat {aAc}\] = \[\widehat {bBA}\]
Suy ra \[\widehat {a'AB} = \widehat {b'Bc'}\].
Vậy định lí được chứng minh.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho định lí: “Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại”.
Giả thiết và kết luận của định lí trên là:
Câu 2:
Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc trong cùng phía bù nhau”.
Vẽ hình cho định lí trên;
Câu 3:
Câu 4:
Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc trong cùng phía bù nhau”.
Chứng minh định lí.
Câu 5:
Phát biểu định lí sau bằng lời:
GT |
a ⊥ b; c ⊥ b; a ≠ c |
KL |
a // c |
Câu 6:
Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau”.
Viết giả thiết, kết luận của định lí trên;
Câu 7:
Cho định lí: “Hai tia phân giác của hai góc kề bù thì vuông góc với nhau” được minh hoạ bởi hình vẽ sau:
Hãy sắp xếp các câu sau để được lời giải hoàn chỉnh cho bài toán chứng minh định lí trên:
(I). “Suy ra Oy vuông góc với Oy'
Vậy định lí được chứng minh.”;
(II). “Vì Oy' là tia phân giác của \(\widehat {x'Oz}\) (giả thiết) nên \({\widehat O_3} = \frac{1}{2}\widehat {x'Oz}\)”;
(III) “Mà \(\widehat {xOz}\) và \(\widehat {zOx'}\)là hai góc kề bù (giả thiết)
Nên \(\widehat {xOz} + \widehat {zOx'} = 180^\circ \) (tính chất hai góc kề bù)
Do đó \(\widehat {yOy'} = \frac{1}{2}{.180^o} = {90^o}\)”;
(IV). “Có \(\widehat {yOy'} = {\widehat O_2} + {\widehat O_3}\)\( = \frac{1}{2}\widehat {xOz} + \frac{1}{2}\widehat {x'Oz}\)\( = \frac{1}{2}\left( {\widehat {xOz} + \widehat {zOx'}} \right)\)”
(V). “Vì Oy là tia phân giác của \(\widehat {xOz}\)(giả thiết) nên \({\widehat O_2} = \frac{1}{2}\widehat {xOz}\)”.
15 câu Trắc nghiệm Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề thi giữa kì 1 Toán 7 KNTT có đáp án - Đề 1
Đề thi Học kì 1 Toán 7 Cánh diều có đáp án (Đề 1)
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Đề thi Toán lớp 7 Học kì 1 có đáp án (Đề 1)
5 câu Trắc nghiệm Toán 7 CTST Bài tập cuối chương 9 có đáp án (Nhận biết)
10 câu Trắc nghiệm Toán 7 CD Bài tập cuối chương 7 có đáp án (Nhận biết)
Đề kiểm tra 15 phút Toán 7 Chương 3 Hình học có đáp án (phần Qhgcytttg - Trắc nghiệm 1)
về câu hỏi!