Câu hỏi:

12/08/2022 13,566

Một tam giác có ba cạnh tỉ lệ thuận với 3; 4; 5 và có chu vi là 60 cm. Tính độ dài các cạnh của tam giác đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Gọi a, b, c (cm) lần lượt là độ dài 3 cạnh của tam giác (0 < a, b, c < 60).

Chu vi là 60 cm nên a + b + c = 60.

Ba cạnh tỉ lệ thuận với 3; 4; 5 nên ta có a3=b4=c5 .

Theo tính chất của dãy tỉ số bằng nhau, ta có:

a3=b4=c5=a+b+c3+4+5=6012=5.

Suy ra: a = 5 . 3 = 15; b = 5 . 4 = 20; c = 5 . 5 = 25.

Do đó a = 15; b = 20; c = 25 (thỏa mãn).

Vậy độ dài ba cạnh của tam giác là: 15 cm; 20 cm và 25 cm.

Chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y, z (cây) lần lượt là số cây trồng của các lớp 7A, 7B, 7C (0 < x, y, z < 24).

Số cây xanh tỉ lệ với số học sinh nên ta có:

x : y : z = 32 : 28 : 36 hay x32=y28=z36 .

Tổng số cây xanh phải chăm sóc là 24 cây nên x + y + z = 24.

Theo tính chất của dãy tỉ số bằng nhau ta có:

x32=y28=z36=x+y+z32+28+36=2496=14.

Suy ra x=32.14=8 ; y=28.14=7 ; z=36.14=9  (thỏa mãn)

Vậy số cây trồng của các lớp 7A, 7B, 7C theo thứ tự là 8 cây, 7 cây và 9 cây.

Lời giải

Đáp án đúng là: B

Gọi x, y, z (m) là độ dài ba cạnh của tam giác lần lượt tỉ lệ thuận với 3; 5; 7 (x, y, z > 0).

Vì x, y, z tỉ lệ thuận với 3; 5; 7 ta có: x3=y5=z7 .

Khi đó, x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác.

Theo đề bài ta có: x + z – y = 20.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x3=y5=z7=x+zy3+75=205=4.

Do đó: x = 3 . 4 = 12 (thỏa mãn).

Vậy cạnh nhỏ nhất của tam giác là 12 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Giá tiền của 6 quyển vở là bao nhiêu biết rằng 4 quyển vở giá 36 000 đồng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay