Vẽ đồ thị mỗi hàm số sau, từ đó suy ra tập nghiệm của bất phương trình tương ứng
a) y = x2 – 3x + 2 và bất phương trình: x2 – 3x + 2 ≥ 0;
Vẽ đồ thị mỗi hàm số sau, từ đó suy ra tập nghiệm của bất phương trình tương ứng
a) y = x2 – 3x + 2 và bất phương trình: x2 – 3x + 2 ≥ 0;
Câu hỏi trong đề: Giải SBT Toán 10 Bài tập chương 6 có đáp án !!
Quảng cáo
Trả lời:
a)
Đồ thị hàm số y = x2 – 3x + 2 là parabol có bề lõm hướng lên, đỉnh là (1,5; –0,25), đi qua hai điểm (1; 0) và (2; 0). Đồ thị hàm số như hình vẽ:
Việc giải bất phương trình x2 – 3x + 2 ≥ 0 ứng với việc tìm các khoảng mà phần đồ thị tương ứng của nó nằm phía trên trục hoành. Từ đồ thị trên ta thấy khi x ≤ 1 và x ≥ 2 thì đồ thị hàm số y = x2 – 3x + 2 nằm phía trên trục hoành.
Vậy tập nghiệm của bất phương trình là (–∞; 1]∪[2; +∞).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
Xét hình (a) ta có:
Parabol có bề lõm hướng xuống nên a < 0
Parabol cắt trục Oy tại điểm có tung độ dương nên c > 0
Parabol có đỉnh có hoành độ là: < 0. Mà a < 0 nên b < 0
Vậy a < 0, c > 0, b < 0.
b)
Xét hình (b) ta có:
Parabol có bề lõm hướng lên nên a > 0
Parabol cắt trục Oy tại điểm có tung độ dương nên c > 0
Parabol có đỉnh có hoành độ là: > 0. Mà a > 0 nên b < 0
Vậy a > 0, c > 0, b < 0.
c)
Xét hình (c) ta có:
Parabol có bề lõm hướng lên nên a > 0
Parabol cắt trục Oy tại gốc tọa độ nên c = 0.
Parabol có đỉnh có hoành độ là: < 0. Mà a > 0 nên b > 0
Vậy a > 0, c = 0, b > 0.
d)
Xét hình (d) ta có:
Parabol có bề lõm hướng xuống nên a < 0
Parabol cắt trục Oy tại điểm có tung độ âm nên c < 0
Parabol có đỉnh có hoành độ là: > 0. Mà a < 0 nên b > 0
Vậy a < 0, c < 0, b > 0.
Lời giải
Đáp án đúng là: D
Parabol y = x2 – 2x + 3 có a = 1 > 0
Ta có:
Vậy hàm số nghịch biến trên khoảng (–∞; 1) và đồng biến trên khoảng (1; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.