Câu hỏi:
13/07/2024 13,8191)Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.
Một hội trường có 100 ghế ngồi được kê thành những dãy ghế, mỗi dãy ghế có số ghế ngồi như nhau. Sau đó, khi sửa chữa người ta đã bổ sung thêm 5 dãy ghế. Để đảm bảo số chỗ ngồi của hội trường như ban đầu, mỗi dãy ghế được kê ít hơn so với ban đầu là 1 ghế. Hỏi ban đầu, hội trường có bao nhiêu dãy ghế?
2) Chiếc mũ sinh nhật là một hình nón được làm từ bìa cứng có đường kính đáy là 36cm, độ dài đường sinh là 35cm. Hãy tính diện tích phần bìa cứng để làm chiếc mũ nói trên. (Bỏ qua mép gấp và cho π ≈ 3,14).
Câu hỏi trong đề: Đề thi Học kì 2 Toán 9 chọn lọc, có đáp án !!
Quảng cáo
Trả lời:
1)
Gọi số dãy ghế ban đầu là x (dãy) (x ∈ ℕ*).
Số dãy ghế thực tế là x + 5 (dãy)
Lúc đầu mỗi dãy có số ghế là: (ghế)
Thực tế mỗi dãy có số ghế là: (ghế)
Vì mỗi dãy ghế được kê ít hơn so với ban đầu là 1 ghế do đó ta có phương trình:
= 1
<=>100 (x + 5) − 100x = x (x + 5)
<=>100x + 500 − 100x = x2 + 5x
<=>x2 + 5x − 500 = 0
<=>(x – 20) (x + 25) = 0
<=>
<=>
Ta thấy chỉ có x = 20 là thỏa mãn điều kiện.
Vậy số dãy ghế ban đầu là 20 dãy ghế.
2) Vì đường kính đáy là 36 (cm) nên bán kính đáy của chiếc mũ sinh nhật là:
R = = 18 (cm)
Vì chiếc mũ sinh nhật là hình nón nên diện tích bìa cứng dùng đẻ làm chiếc mũ nói trên là:
S = π. R. l = 3,14. 18.35 = 1978,2 (cm2)
Vậy diện tích phần bài cứng để làm một chiếc mũ như trên là 1978,2 (cm2).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Vì AH là đường cao của ∆ ABC nên = 90°.
Vì M là hình chiếu vuông góc của B trên đường thẳng AD nên = 90°.
Suy ra = 90°.
Do đó H và M là hai đỉnh liên tiếp cùng nhìn AB dưới một góc bằng nhau và bằng 90°.
Vì vậy tứ giác ABHM nội tiếp.
2) Nối B với D và D với C.
Xét đường tròn (O) ta có:
= 90° (góc nội tiếp chắn đường kính AD).
BD ⊥ AE, DC ⊥ AF
Xét ∆ADE vuông tại D, có DB là đường cao:
Áp dụng hệ thức lượng ta có: AB. AE = AD2
Xét ∆ADF vuông tại D, có DC là đường cao:
Áp dụng hệ thức lượng ta có:AC.AF = AD2
Do đó: AB. AE = AC.AF (đpcm).
3) Vì IK // CD nên = (2 góc định vị) (1)
Xét đường tròn (O) ta có: (góc nội tiếp chắn cung BD) (2)
Từ (1) và (2) suy ra tứ giác SBKI nội tiếp (1)
Vì I là trung điểm BC OI ⊥ BC
=> = 90°
= 90° và cùng chắn cung OB nên: Tứ giác OIMB nội tiếp
(2)
Từ (1) và (2) suy ra:
Tứ giác OISD nội tiếp => O, I, S, D thuộc một đường tròn (3)
Vì = 90° và cùng chắn cung OQ nên: Tứ giác OIDQ nội tiếp O, I, D, Q thuộc một đường tròn (4)
Từ (3) và (4) suy ra: O, I, D, Q, S thuộc một đường tròn
=> Tứ giác OSQD nội tiếp
=> = 90°
=> = 180°
=> = 180° − 90° = 90°
=> OS ⊥ SQ
=>SQ là tiếp tuyến (O) (đpcm)
Lời giải
1) Phương trình đường thẳng (d) khi m = 4 là: y = 4x − 4 + 1 = 4x – 3.
Hoành độ giao điểm của (d) và (P) khi m = 4 là:
x2 = 4x – 3
<=> x2 – 4x + 3 = 0
Khi x = 1 thì y = 12 = 1
Khi x = 3 thì y = 32 = 9
Vậy tọa độ giao điểm của (d) và (P) khi m = 4 là: (x; y) = (1; 1) và (x; y) = (3; 9).
2) Phương trình hoành độ giao điểm của (d) và (P) là:
x2 = 4x − m + 1
<=> x2 − 4x + m − 1= 0
Ta có: △ = b2 – 4ac = (−4)2 – 4. (m – 1) = – 4m + 20
Để phương trình có hai nghiệm phân biệt thì:
∆ > 0
– 4m + 20 > 0
– 4m > – 20
m < 5
Theo định lý Vi-ét, ta có:
x1 + x2 = – = 4 (1)
x1.x2 = = m – 1 (2)
Ta có: =
x1 = 2x2 (3)
Từ (1) ta có: x1 = 4 – x2 thay vào (3) ta được:
<=>4 – x2 = 2x2
<=> 3x2 = 4
<=> x2 =
Vậy x1 = 4 – x2 = 4 – =
Thay x1 = và x2 = vào (2) ta được:
= m – 1
<=> m = + 1
<=> m = (TMĐK)
Vậy m = .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Chuyên đề 8: Hình học (có đáp án)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận