Câu hỏi:

09/09/2022 1,072

Một phân xưởng may áo vest và quần âu để chuẩn bị cho dịp cuối năm. Biết may 1 áo vest hết 2m vải và cần 20 giờ; 1 quần âu hết 1,5 m vải và cần 5 giờ. Xí nghiệp được giao sử dụng không quá 900 m vải và số giờ công không vượt quá 6 000 giờ. Theo khảo sát thị trường, số lượng quần bán ra không nhỏ hơn số lượng áo và không vượt quá 2 lần số lượng áo. Khi xuất ra thị trường, 1 chiếc áo lãi 350 nghìn đồng, 1 chiếc quần lãi 100 nghìn đồng. Phân xưởng cần may bao nhiêu áo vest và quần âu để thu được tiền lãi cao nhất (biết thị trường tiêu thụ luôn đón nhận sản phẩm của xí nghiệp).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là D

Gọi số lượng áo bán ra là x (cái) (x ℕ)

Số lượng quần bán ra là y (cái) (y ℕ).

Số mét vải để may x áo và y quần là: 2x + 1,5y (m).

Vì xí nghiệp được giao sử dụng không quá 900 m vải nên ta có: 2x + 1,5y ≤ 900 (1).

Số giờ để may x áo và y quần là: 20x + 5y (giờ).

Vì số giờ công không vượt quá 6 000 giờ nên ta có: 20x + 5y ≤ 6000 hay 4x + y ≤ 1200 (2).

Theo khảo sát thị trường, ta có:

Số lượng quần bán ra không nhỏ hơn số lượng áo y ≥ x (4)

Số lượng quần không vượt quá 2 lần số lượng áo y ≤ 2x (5)

Từ (1), (2), (3) và (4) nên ta có hệ bất phương trình:

2x+1,5y9004x+y1200yxy2xx0y02x+1,5y9004x+y1200xy02xy0x0y0

 

Biểu diễn miền nghiệm của hệ bất phương trình là tứ giác OABC với O(0; 0), A(180; 360), B(200; 250), C(240; 240).

Một phân xưởng may áo vest và quần âu để chuẩn bị cho dịp cuối năm. Biết may 1 áo vest (ảnh 1)

Tiền lãi khi bán x cái áo và y cái quần là 350x + 100y (nghìn đồng).

Đặt T = 350x + 100y.

Ta có biểu thức T = 350x + 100y có giá trị lớn nhất tại một trong các đỉnh của tứ giác OABC.

Tính giá trị biểu thức T tại các đỉnh của tứ giác:

Tại O(0; 0), với x = 0 và y = 0 thì T = 350.0 + 100.0 = 0;

Tại A(180; 360), với x = 180 và y = 360 thì T = 350.180 + 100.360 = 99 000;

Tại B(225; 300), với x = 225 và y = 300 thì T = 350.225 + 100.300 = 108 750;

Tại C(240; 240), với x = 240 và y = 240 thì T = 350.240 + 100.240 = 108 000;

Ta được T đạt giá trị lớn nhất bằng 108 750 000 đồng khi x = 225, y = 300.

Vậy để thu được tiền lãi là cao nhất thì phân xưởng cần may 225 cái áo vest, 300 cái quần âu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta biểu diễn miền ngiệm của hệ bất phương trình 2x+3y60x02x3y10  trên hệ trục tọa độ

Vẽ đường thẳng d1: 2x + 3y – 6 = 0, đường thẳng d1 đi qua hai điểm (0; 2) và (3; 0)

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 + 0 – 6 = – 6 < 0 thoả mãn bất phương trình 2x + 3y – 6 ≤ 0. Vậy O(0; 0) thuộc miền nghiệm của bất phương trình.

Do đó miền nghiệm D1 là nửa mặt phẳng không bị gạch được chia bởi đường thẳng d1 và chứa gốc tọa độ O (kể cả bờ).

Vẽ đường thẳng d2: 2x – 3y – 1 = 0, đường thẳng d2 đi qua hai điểm 0;13 12;0 .

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 + 0 – 1 = – 1 < 0 thoả mãn bất phương trình 2x – 3y – 1 ≤ 0. Vậy O(0; 0) thuộc miền nghiệm của bất phương trình.

Do đó miền nghiệm D2 là nửa mặt phẳng không bị gạch được chia bởi đường thẳng d2 và chứa gốc tọa độ O (kể cả bờ).

x 0 có miền nghiệm là nửa mặt phẳng nằm bên phải trục tung (kể cả trục tung).

Miền nghiệm là phần không bị gạch như hình vẽ.

Biểu thức L = y – x, với x và y thỏa mãn hệ bất phương trình 2x+3y-6 bé hơn bằng 0, y lớn hơn bằng 0 (ảnh 1)

Miền nghiệm là tam giác ABC với A74;56  B(0; 2);  C0;13

Nhận thấy biệt thức L = y – x chỉ đạt giá trị lớn nhất và nhỏ nhất tại các điểm A, B, C.

Ta có:

L = y – x suy ra L74;56=5674=1112

L = y – x suy ra L(0; 2) = 2 – 0 = 2;

L = y – x suy ra L0;13=130=13 

Vậy a = 2 và b =  1112

Câu 2

Giá trị lớn nhất của biểu thức F(x; y) = 2x + y trên miền xác định bởi hệ: y2x22yx4x+y5  là:

Lời giải

Hướng dẫn giải

Đáp án Đúng là: D

Ta tìm miền nghiệm xác định bởi hệ y2x22yx4x+y5

Vẽ đường thẳng d1: y – 2x = 2, đường thẳng d1 qua hai điểm (0; 2) và (– 1; 0).

Ta xét điểm O(0; 0) thay vào phương trình đường thẳng ta có  0 – 2.0 = 0 < 2.

Do đó điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Vậy miền nghiệm D1 là nửa mặt phẳng được chia bởi đường thẳng d1 chứa gốc tọa độ O kể cả bờ.

Vẽ đường thẳng d2: 2y – x = 4, đường thẳng d2 qua hai điểm (0; 2) và (– 4; 0).

Ta xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 2.0 – 0 = 0 < 4 không thoả mãn bất phương trình 2y – x ≥ 4.

Do đó điểm O(0; 0) không thuộc nềm nghiệm của bất phương trình. Vậy miền nghiệm D2 là nửa mặt phẳng được chia bởi đường thẳng d2 không chứa gốc tọa độ O kể cả bờ.

Vẽ đường thẳng d3: x + y = 5, đường thẳng d1 qua hai điểm (0; 5) và (5; 0).

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 + 0 = 0 < 5, thoả mãn bất phương trình x + y ≤ 5.

Do đó điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Vậy miền nghiệm D3 là nửa mặt phẳng được chia bởi đường thẳng d3 chứa gốc tọa độ O kể cả bờ.

Miền nghiệm là phần không gạch chéo như hình vẽ.

Giá trị lớn nhất của biểu thức F(x; y) = 2x + y trên miền xác định bởi hệ:   (ảnh 1)

Miền nghiệm là tam giác ABC với A(1; 4), B(0; 2), C(2; 3).

Ta tính giá trị của F(x; y) = 2x + y tại các giao điểm:

Tính F(x; y) = 2x + y suy ra F(1; 4) = 2.1 + 4 = 6.

Tính F(x; y) = 2x + y suy ra F(0; 2) = 2.0 + 2 = 2.

Tính F(x; y) = 2x + y suy ra F(2; 3) = 2.2 + 3 = 7.

Vậy max F(x; y) = 7 khi x = 2, y = 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay