Câu hỏi:

13/07/2024 6,074

Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình x - y 2x+y 4x-5y 2.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Xét bất phương trình x – y – 2

Vẽ đường thẳng d1: x – y = – 2 ;

Lấy điểm O(0; 0) d1 có 0 – 0 = 0 > – 2. Do đó O(0; 0) thuộc vào miền nghiệm của bất phương trình.

Do đó miền nghiệm D1 là nửa mặt phẳng có bờ là đường thẳng d1 chứa điểm O và kể cả đường thẳng d1.

+) Xét bất phương trình x + y ≤ 4

Vẽ đường thẳng d2: x + y = 4;

Lấy điểm O(0; 0) d2 có 0 + 0 = 0 < 4. Do đó O(0; 0) thuộc vào miền nghiệm của bất phương trình.

Do đó miền nghiệm D2 là nửa mặt phẳng có bờ là đường thẳng d2 chứa điểm O và kể cả đường thẳng d2.

+) Xét bất phương trình x – 5y ≤ – 2

Vẽ đường thẳng d3: x – 5y = – 2;

Lấy điểm O(0; 0) d3 có 0 – 5.0 = 0 > – 2. Do đó O(0; 0) không thuộc vào miền nghiệm của bất phương trình.

Do đó miền nghiệm D3 là nửa mặt phẳng có bờ là đường thẳng d3 không chứa điểm O và kể cả đường thẳng d3.

Vậy miền nghiệm của hệ bất phương trình là giao của ba miền nghiệm D1, D2 và D3 là miền trong của tam giác ABC có A(1; 3), B(3; 1), C(– 2; 0).

Tìm giá trị nhỏ nhất của biểu thức F(x; y) = – 2x + y trên miền nghiệm của hệ bất phương trình . (ảnh 1)

Giá trị nhỏ nhất của biểu thức F(x; y) đạt được trên các đỉnh của tam giác ABC.

Ta có:

Tại điểm A(1; 3) ta có: F(x; y) = – 2.1 + 3 = 1.

Tại điểm B(3; 1) ta có: F(x; y) = – 2.3 + 1 = – 5.

Tại điểm C(– 2; 0) ta có: F(x; y) = – 2.(– 2) + 0 = 4.

Vậy giá trị nhỏ nhất của F(x; y) = – 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Mệnh đề phủ định của mệnh đề “Phương trình ax2 + bx + c = 0 (a ≠ 0) vô nghiệm” là:

Xem đáp án » 23/09/2022 2,720

Câu 2:

Cho A = {0; 1; 2; 3; 4} và B = {2; 3; 4; 5; 6}. Tập hợp (A \ B) (B \ A) bằng?

Xem đáp án » 23/09/2022 2,719

Câu 3:

Cho điểm M(x0; y0) nằm trên đường tròn đơn vị thỏa mãn xOM = α. Khi đó phát biểu nào dưới đây là sai?

Xem đáp án » 23/09/2022 2,206

Câu 4:

Bất phương trình nào sau đây không là bất phương trình bậc nhất một ẩn?

Xem đáp án » 23/09/2022 1,932

Câu 5:

Hình vẽ sau đây (phần không bị gạch) là biểu diễn của tập hợp nào?
Hình vẽ sau đây (phần không bị gạch) là biểu diễn của tập hợp nào? (ảnh 1)

Xem đáp án » 23/09/2022 1,910

Câu 6:

Đẳng thức nào sau đây, mô tả đúng hình vẽ bên?
Đẳng thức nào sau đây, mô tả đúng hình vẽ bên? (ảnh 1)

Xem đáp án » 23/09/2022 1,872

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store