Câu hỏi:
27/09/2022 448Tính giá trị của biểu thức: \(M = {m^2}\left( {{m^2} - n} \right)\left( {{m^3} - {n^6}} \right)\left( {m + {n^2}} \right)\) với \[m{\rm{ }} = {\rm{ }} - {\rm{ }}16;{\rm{ }}n = {\rm{ }} - {\rm{ }}4\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(M = {m^2}\left( {{m^2} - n} \right)\left( {{m^3} - {n^6}} \right)\left( {m + {n^2}} \right)\) với \[m{\rm{ }} = {\rm{ }} - {\rm{ }}16;{\rm{ }}n = {\rm{ }} - {\rm{ }}4\]
Thay \[m{\rm{ }} = {\rm{ }} - {\rm{ }}16;{\rm{ }}n = {\rm{ }} - {\rm{ }}4\] vào thừa số \(m + {n^2}\) , ta được:
\(m + {n^2} = \left( { - 16} \right) + {\left( { - 4} \right)^2} = \left( { - 16} \right) + 16 = 0\)
Suy ra: \(M = \,\,{m^2}\left( {{m^2} - n} \right)\left( {{m^3} - {n^6}} \right)\left( {m + {n^2}} \right) = {m^2}\left( {{m^2} - n} \right)\left( {{m^3} - {n^6}} \right).0 = 0\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Câu 5:
Cho a = -7, b = 4. Tính giá trị các biểu thức sau và rút ra nhận xét:
về câu hỏi!