Câu hỏi:

06/10/2022 236

Có bao nhiêu số nguyên n  thỏa mãn  \[(2n - 1) \vdots (n + 1)\;?\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

Ta có

\[2n - 1 = 2n + 2 - 3 = (2n + 2) - 3 = 2(n + 1) - 3\]

\[\left( {2n - 1} \right) \vdots \left( {n + 1} \right)\] nên \[\left[ {2\left( {n + 1} \right) - 3} \right] \vdots \left( {n + 1} \right)\]

\[2\left( {n + 1} \right) \vdots \left( {n + 1} \right)\] suy ra \[ - 3 \vdots \left( {n + 1} \right) \Rightarrow n + 1 \in U\left( { - 3} \right) = \left\{ { \pm 1;\, \pm 3} \right\}\]

Ta có bảng sau:

Media VietJack

Vậy \[n \in \left\{ { - 4;\, - 2;\,0;\,2} \right\}\]

Do đó có 4 số nguyên nn thỏa mãn đề bài.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời:

\[C = - {\left( {x - 5} \right)^2} + 10\]

Ta có : \[{\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\]

\[ \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\]

Suy ra \[C \le 10\,\,\forall x \in \mathbb{Z}\]

\[C = 10\] khi \[{\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]

Vậy giá trị lớn nhất của C là 10 khi \[x = 5\] .

Đáp án cần chọn là: D

Lời giải

Trả lời:

\[ - 7 < \;x \le 5\] nên \[x\; \in \;\left\{ { - 6; - 5; - 4; - 3; - 2; - 1;0;1;2;3;4;5} \right\}\]

Tổng các số nguyên x là: 

\[\begin{array}{l}( - 6) + ( - 5) + ( - 4) + ( - 3) + ( - 2) + ( - 1) + 0 + 1 + 2 + 3 + 4 + 5\\ = ( - 6) + [( - 5) + 5] + [( - 4) + 4] + [( - 3) + 3] + [( - 2) + 2] + [( - 1) + 1] + 0\\ = ( - 6) + 0 + 0 + 0 + 0 + 0 + 0 = - 6\end{array}\]

Đáp án cần chọn là: C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP