Câu hỏi:

30/10/2022 193

Phép chia đa thức 2x3 – 3x2 + x cho đa thức 5x7 – 2n ( n ℕ và 0 ≤ n ≤ 3)

Tìm n để phép chia trên là phép chia hết.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Với n = 0 ta có:

(2x3 – 3x2 + x) : (5x7 – 2n)

= (2x3 – 3x2 + x) : (5x7)

Tât cả các hạng tử của 2x3 – 3x2 + x đều không chia hết cho 5x7.

Vì vậy n = 0 không thỏa mãn yêu cầu bài toán.

Với n = 1 ta có:

(2x3 – 3x2 + x) : (5x7 – 2n)

= (2x3 – 3x2 + x) : (5x5)

Tât cả các hạng tử của 2x3 – 3x2 + x đều không chia hết cho 5x5.

Vì vậy n = 1 không thỏa mãn yêu cầu bài toán.

Với n = 2 ta có:

(2x3 – 3x2 + x) : (5x7 – 2n)

= (2x3 – 3x2 + x) : (5x3)

Ta thấy chỉ có hạng tử 2x3 chia hết cho 5x3.

Vì vậy n = 2 không thỏa mãn yêu cầu bài toán.

Với n = 3 ta có:

(2x3 – 3x2 + x) : (5x7 – 2n)

= (2x3 – 3x2 + x) : (5x)

Ta thấy tất cả các hạng tử của đa thức 2x3 – 3x2 + x đều chia hết cho 5x. Suy ra phép chia (2x3 – 3x2 + x) : (5x7 – 2n) là một phép chia hết.

Vì vậy n = 3 thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đa thức A(x) = 3x4 + 11x3 − 5x2 – 19x + 10. Đa thức H(x) thỏa mãn

A(x) = (3x2 + 2x – 5). H(x) là:

Xem đáp án » 30/10/2022 371

Câu 2:

Bậc, hệ số lớn nhất, hệ số tự do của đa thức

g(x) = (2x5 + 3x4 + 3x3 + 2x) : (2x) lần lượt là:

Xem đáp án » 30/10/2022 211

Câu 3:

Tìm điều kiện của n sao cho số 2n2 + 3n + 1 chia hết cho số 2n + 1.

Xem đáp án » 30/10/2022 211

Câu 4:

Tìm đa thức P sao cho A = B. P. Biết A = 4x4 – 6x3 – 6x2 + 6x + 2 và

B = 2x2 – 2.

Xem đáp án » 30/10/2022 209

Câu 5:

Ta có F = G . Q + R. Biết Q và R là thương và dư của phép chia F : G (G 0). Tìm R biết F = 5x3 + x2 + 4x + 3 và G = 2x + 2.

Xem đáp án » 30/10/2022 209

Câu 6:

Nghiệm của đa thức f(x) = (x3 + 3x2 + 2x) : x (x 0) là:

Xem đáp án » 30/10/2022 181

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store