Câu hỏi:
05/11/2022 8,636Cho tập hợp A = {2; 3; 4; 5; 6; 7; 8}. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S, xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Số phần tử của tập S là: \(A_7^4 = 840\)
Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S. Suy ra số phần tử của không gian mẫu là n(Ω) = 840
Gọi A là biến cố ” Số được chọn luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ ” .
Số cách chọn hai chữ số chẵn từ bốn chữ số 2; 4; 6; 8 là \(C_4^2 = 6\)cách.
Số cách chọn hai chữ số lẻ từ ba chữ số 3; 5; 7 là \(C_3^2 = 3\) cách.
Từ bốn chữ số được chọn ta lập số có bốn chữ số khác nhau, số cách lập tương ứng với một hoán vị của 4 phần tử nên có 4! cách.
Ta có: n(A) = 6 . 3 . 4! = 432
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{432}}{{840}} = \frac{{18}}{{35}}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có: n(Ω) = 12!
Biến cố A: “3 quyển sách thuộc cùng 1 môn không được xếp liền nhau”
Xếp 3 cuốn sách Toán kề nhau. Xem 3 cuốn sách Toán là 3 vách ngăn, giữa 3 cuốn sách Toán có 2 vị trí trống và thêm hai vị trí hai đầu, tổng cộng có 4 vị trí trống.
Bước 1. Chọn 3 vị trí trống trong 4 vị trí để xếp 3 cuốn Lý, có \(C_4^3 = 4\)cách.
Bước 2. Giữa 6 cuốn Lý và Toán có 5 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 7 vị trí trống. Chọn 3 vị trí trong 7 vị trí trống để xếp 3 cuốn Hóa, có \(C_7^3 = 35\) cách.
Bước 3. Giữa 9 cuốn sách Toán, Lý và Hóa đã xếp có 8 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 10 vị trí trống. Chọn 3 vị trí trong 10 vị trí trống để xếp 3 cuốn Sinh, có \(C_{10}^3 = 120\) cách. Vậy theo quy tắc nhân có:
4 . 35 . 120 = 16 800 cách.
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{16800}}{{12!}} = \frac{1}{{28512}}\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Không gian mẫu là số cách chia tùy ý 9 đội thành 3 bảng, ta có: n(Ω) = \(C_9^3.C_6^3.C_3^3 = 1680\)
Gọi biến cố A: “3 đội bóng của Việt Nam ở 3 bảng khác nhau”
Xếp 3 đội Việt Nam ở 3 bảng khác nhau có 3! = 6 cách
Xếp 6 đội còn lại vào 3 bảng A, B, C này có \(C_6^2.C_4^2.C_2^2 = 90\)cách
Do đó, n(A) = 6 . 90 = 540.
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{540}}{{1680}} = \frac{9}{{28}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.