CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trên cùng một quãng đường, vận tốc và thời gian tỉ lệ nghịch với nhau.

Gọi v1, t1 lần lượt là vận tốc và thời gian của xe I; v2, t2 lần lượt là vận tốc và thời gian của xe II.

Thời gian xe I đi hết đoạn đường AB là:

14 – 8 = 6 (giờ).

Thời gian xe II đi hết đoạn đường AB là:

(14 – 0,5) – 9 = 4,5 (giờ).

Ta có \(\frac{{{v_1}}}{{{v_2}}}{\rm{ = }}\frac{{{t_2}}}{{{t_1}}} = \frac{{4,5}}{6} = \frac{3}{4}\) hay \(\frac{{{v_1}}}{3} = \frac{{{v_2}}}{4}\).

Vì vận tốc xe thứ hai lớn hơn vận tốc xe thứ nhất là 20 km/h nên v2 – v1 = 20.

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{{{v_1}}}{3} = \frac{{{v_2}}}{4} = \frac{{{v_2} - {v_1}}}{{4 - 3}} = \frac{{20}}{1} = 20\).

Suy ra v1 = 20 . 3 = 60; v2 = 20 . 4 = 80.

Vậy vận tốc của xe thứ nhất là 60 km/h, vận tốc của xe thứ hai là 80 km/h.

Lời giải

Đặt \(\frac{a}{b} = \frac{c}{d} = k\) suy ra a = bk, c = dk.

Ta có \(\frac{{a - 2b}}{b} = \frac{{bk - 2b}}{b} = \frac{{b\left( {k - 2} \right)}}{b} = k - 2\);

\(\frac{{c - 2d}}{d} = \frac{{dk - 2d}}{d} = \frac{{d\left( {k - 2} \right)}}{d} = k - 2\).

Vậy \(\frac{{a - 2b}}{b} = \frac{{c - 2d}}{d}\) (đpcm).

Câu 3

Thay tỉ số 1,25 : 3,45 bằng tỉ số giữa các số nguyên ta được

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP