Câu hỏi:

13/07/2024 3,019

Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AC, điểm E trên cạnh AC sao cho BD = CE.

Tìm vị trí của hai điểm D và E sao cho BD = DE = EC. Khi đó tìm vị trí của điểm I

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Tìm vị trí của hai điểm D và E sao cho BD = DE = EC. Khi đó tìm vị trí của điểm I (ảnh 1)

Xét DADE có AD = AE nên DADE cân tại A.

Suy ra \(\widehat {ADE} = \widehat {AED}\).

\(\widehat {DAE} + \widehat {ADE} + \widehat {AED} = 180^\circ \) (tổng ba góc trong một tam giác)

Suy ra \(\widehat {ADE} = \widehat {AED} = \frac{{180^\circ - \widehat {DAE}}}{2}\,\,\,\,\,\left( 1 \right)\).

Tương tự với tam giác ABC cân tại A ta có \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ - \widehat {BAC}}}{2}\,\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(\widehat {ADE} = \widehat {ABC}\)

Mà hai góc này ở vị trí đồng vị nên DE // BC.

Suy ra \(\widehat {DEB} = \widehat {EBC}\) (hai góc so le trong)       (3)

Do BD = DE nên DBDE là tam giác cân tại D

Suy ra \(\widehat {DBE} = \widehat {DEB}\)         (4)

Từ (3) và (4) suy ra \(\widehat {DBE} = \widehat {EBC}\)

Khi đó BE là đường phân giác của góc ABC.

Tương tự, với DE = EC ta cũng chứng minh được CD là đường phân giác của góc ACB.

Xét tam giác ABC có BE, CE là hai đường phân giác của tam giác cắt nhau tại I

Suy ra I cách đều ba cạnh của tam giác ABC.

Vậy để BD = DE = EC thì BE và CD là hai đường phân giác của DABC, khi đó I cách đều ba cạnh của DABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm giá trị nguyên của x để đa thức 4x3 – 4x2 – x + 4 chia hết cho đa thức 2x + 1.

Xem đáp án » 13/07/2024 7,058

Câu 2:

Một đội tình nguyện viên tham gia chống dịch Covid – 19 gồm 40 thành viên đến từ các vùng miền được thống kê trong bảng sau:

Vùng miền

Trung du và miền núi phía Bắc

Đồng bằng sông Hồng

Tây Nguyên

Đồng bằng sông Cửu Long

Số tình nguyện viên tham gia

5

12

8

15

Vẽ biểu đồ biểu diễn tỉ lệ phần trăm đã tính ở câu a.

Xem đáp án » 13/07/2024 4,677

Câu 3:

Một đội tình nguyện viên tham gia chống dịch Covid – 19 gồm 40 thành viên đến từ các vùng miền được thống kê trong bảng sau:

Vùng miền

Trung du và miền núi phía Bắc

Đồng bằng sông Hồng

Tây Nguyên

Đồng bằng sông Cửu Long

Số tình nguyện viên tham gia

5

12

8

15

Lập bảng thống kê tỉ lệ phần trăm số tình nguyện viên tham gia của mỗi vùng miền trong đội tình nguyện viên đó.

Xem đáp án » 13/07/2024 4,541

Câu 4:

Trong một hộp chứa 15 quả bóng có kích thước và trọng lượng như nhau được đánh số từ 1 đến 15. Lấy ngẫu nhiên 1 quả bóng từ trong hộp. Cho biến cố F: “Lấy được quả bóng đánh số chia hết cho 9”. Xác suất của biến cố F là

Xem đáp án » 22/12/2022 3,431

Câu 5:

Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AC, điểm E trên cạnh AC sao cho BD = CE.

Chứng minh rằng: AD = AE và DABE = DACD.

Xem đáp án » 13/07/2024 3,174

Câu 6:

Cho tam giác ABC có \(\widehat A = 60^\circ \)\(\widehat B = x\), \(\widehat C = 2x\).

Số đo x là bao nhiêu và tam giác ABC là tam giác gì?

Xem đáp án » 22/12/2022 3,076

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL