Cho các biểu thức
và
với 
1)Tính giá trị của biểu thức A khi 
2)Rút gọn B
3) Tìm a để phương trình A - B = a có nghiệm.
Cho các biểu thức
và
với
1)Tính giá trị của biểu thức A khi
2)Rút gọn B
3) Tìm a để phương trình A - B = a có nghiệm.
Câu hỏi trong đề: Đề kiểm tra giữa học kì 2 môn Toán 9 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
\(\begin{array}{l}2)B = \left[ {\frac{{15 - \sqrt x }}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}} + \frac{{2\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}}} \right].\frac{{\sqrt x - 5}}{{\sqrt x + 1}}\\ = \frac{{\sqrt x + 5}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}}.\frac{{\sqrt x - 5}}{{\sqrt x + 1}} = \frac{1}{{\sqrt x + 1}}\left( \begin{array}{l}x \ge 0\\x \ne 25\end{array} \right)\end{array}\)
3) Với \(x \ge 0,x \ne 25\)
\(\begin{array}{l} \Rightarrow A - B = a \Leftrightarrow \frac{{1 - \sqrt x }}{{1 + \sqrt x }} - \frac{1}{{\sqrt x + 1}} = a \Leftrightarrow \frac{{ - \sqrt x }}{{1 + \sqrt x }} = a\\ \Rightarrow - \sqrt x = a\left( {1 + \sqrt x } \right) \Leftrightarrow \left( {a + 1} \right)\sqrt x = - a\end{array}\)
TH1: \(a = - 1\):Vô nghiệm
\(TH2:a \ne - 1\). Phương trình có dạng \(\sqrt x = \frac{{ - a}}{{a + 1}}\)
Phương trình này có nghiệm thỏa \(x \ge 0,x \ne 25\)
\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{ - a}}{{a + 1}} \ge 0\\\frac{{ - a}}{{a + 1}} \ne 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 \le a \le 0\\6a \ne - 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a \ne \frac{{ - 5}}{6}\\ - 1 \le a \le 0\end{array} \right.\)
Do \(a \ne - 1\)nên giá trị cần tìm của \(a:\left\{ \begin{array}{l} - 1 < a \le 0\\a \ne \frac{{ - 5}}{6}\end{array} \right.\)
Do \(a \ne - 1\)nên giá trị cần tìm của \(a:\left\{ \begin{array}{l} - 1 < a \le 0\\a \ne - \frac{5}{6}\end{array} \right.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\)là số công nhân, \(y\)là số ngày dự định \(\left( {x,y \in N*,x > 10} \right)\)
Theo bài ta có hệ phương trình :
\(\left\{ \begin{array}{l}\left( {x + 10} \right)\left( {y - 2} \right) = xy\\\left( {x - 10} \right)\left( {y + 3} \right) = xy\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x + 10y = 20\\3x - 10y = 30\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\y = 12\end{array} \right.(tm)\)
Vậy có 50 công nhân, làm trong 12 ngày
Lời giải
\( \Rightarrow \angle HMB + \angle HIB = 180^\circ \)mà \(\angle NIH + \angle HIB = 180^\circ \Rightarrow \angle HNB = \angle HIB\)
Xét \(\Delta NIH\)và \(\Delta NMB\)có: \(\angle MNB\)chung,
\( \Rightarrow \frac{{NI}}{{NM}} = \frac{{NH}}{{NB}} \Rightarrow NI.NB = NM.NH\)
\( \Rightarrow \angle KIN = \angle KCN\)(cùng chắn mà \(\angle KCN = \angle ABN\)(cùng chắn
\( \Rightarrow \angle KIN = \angle ABN\), mà chúng đồng vi \( \Rightarrow KI//AH\left( 1 \right)\)
Theo câu 1, tứ giác \(BHMI\)nội tiếp \( \Rightarrow \angle IMB = \angle IHB\)(cùng chắn
Mà \(\angle IMB = \angle CAB\), mà chúng đồng vị \( \Rightarrow IH//AK\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow AHIK\)là hình bình hành
Lại có :
\( \Rightarrow \angle AKH = \angle AHK \Rightarrow \Delta AHK\)cân tại A\( \Rightarrow AH = AK\)
Hình bình hành \(AHIK\)có \(AN = AK \Rightarrow AHIK\)là hình thoi\( \Rightarrow KH\)là đường phân giác \(\angle AKI \Rightarrow IA\)là phân giác \(\angle KIH\)
\( \Rightarrow \Delta {O_1}AH\)cân tại \({O_1}\)và \(\Delta {O_2}BH\)cân tại \({O_2}\), có \(\angle A{O_1}H = 2\angle ANH\), \(\angle B{O_2}H = 2\angle BNH\)\( \Rightarrow \angle {A_1}OH = \angle B{O_2}H\)mà \(\angle ANH = \angle BNH\)
\( \Rightarrow \angle {O_1}AH = \angle {O_1}HA = \angle {O_2}HB = \angle O_2^{}BH\)
Gọi D là giao điểm của \(A{O_1}\)và \(B{O_2}\)có:
\(\Delta ADB\)cân tại \(D \Rightarrow M,O,D\)thẳng hàng
Có \(\angle AMD = \angle MAB = \angle ANM \Rightarrow MA\)là tiếp tuyến của \(\left( {{O_1}} \right) \Rightarrow \angle MAD = 90^\circ \)\( \Rightarrow MD\)là đường kính của \(\left( O \right) \Rightarrow D\)cố định
Ta chứng minh được : \(\angle A{O_1}H = \angle ADB \Rightarrow H{O_1}//D{O_2}\)
\( \Rightarrow \angle AOB = \angle H{O_2}B \Rightarrow H{O_2}//D{O_1}\)
Tứ giác \(H{O_1}D{O_2}\)là hình bình hành\( \Rightarrow {O_2}H = D{O_1}\)
Có \({R_1} + {R_2} = {O_1}A + {O_2}H = {O_1}A + {O_1}D = AD\)
\(A,D\)cố định \( \Rightarrow AD\)không đổi \( \Rightarrow {R_1} + {R_2}\)không đổi
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.