Cho nửa đường tròn \(\left( O \right)\), đường kính \(AB.\)Lấy \(M\)bất kỳ thuộc nửa đường tròn (không trùng với \(A,B)\)và C là điểm chính giữa cung \(AM.\)Gọi \(D\)là giao điểm của \(AC\)và \(BM;H\)là giao điểm của \(AM\)và \(BC\)
1) Chứng minh tứ giác \(CHMD\)nội tiếp
2) Chứng minh \(DA.DC = DB.DM\)
3) Gọi \(Q\)là giao điểm của \(DH\)và \(AB.\)Chứng minh khi điểm \(M\)di chuyển trên nửa đường tròn thì đường tròn ngoại tiếp \(\Delta CMQ\)luôn đi qua một điểm cố định.
Cho nửa đường tròn \(\left( O \right)\), đường kính \(AB.\)Lấy \(M\)bất kỳ thuộc nửa đường tròn (không trùng với \(A,B)\)và C là điểm chính giữa cung \(AM.\)Gọi \(D\)là giao điểm của \(AC\)và \(BM;H\)là giao điểm của \(AM\)và \(BC\)
1) Chứng minh tứ giác \(CHMD\)nội tiếp
2) Chứng minh \(DA.DC = DB.DM\)
3) Gọi \(Q\)là giao điểm của \(DH\)và \(AB.\)Chứng minh khi điểm \(M\)di chuyển trên nửa đường tròn thì đường tròn ngoại tiếp \(\Delta CMQ\)luôn đi qua một điểm cố định.
Câu hỏi trong đề: Đề thi Giữa học kỳ 2 Toán 9 !!
Quảng cáo
Trả lời:




Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



