Câu hỏi:
12/07/2024 4,702
Cho \(\left( {O;R} \right)\), MN là dây không đi qua tâm. \(C,D\)là hai điểm bất kỳ thuộc dây \(MN\left( {C,D} \right.\)không trùng với M, N). \(A\) là điểm chính giữa của cung nhỏ \(MN.\)Các đường thẳng \(AC,AD\)lần lượt cắt (O) tại điểm thứ hai là \(E,F\)
a) Chứng minh \(\angle ACD = \angle AFE\)và tứ giác \(CDFE\)nội tiếp
b) Chứng minh \(A{M^2} = AC.AE\)
c) Kẻ đường kính \(AB.\)Gọi I là tâm đường tròn ngoại tiếp tam giác \(MCE.\)Chứng minh \(M,I,B\)thẳng hàng.
Cho \(\left( {O;R} \right)\), MN là dây không đi qua tâm. \(C,D\)là hai điểm bất kỳ thuộc dây \(MN\left( {C,D} \right.\)không trùng với M, N). \(A\) là điểm chính giữa của cung nhỏ \(MN.\)Các đường thẳng \(AC,AD\)lần lượt cắt (O) tại điểm thứ hai là \(E,F\)
a) Chứng minh \(\angle ACD = \angle AFE\)và tứ giác \(CDFE\)nội tiếp
b) Chứng minh \(A{M^2} = AC.AE\)
c) Kẻ đường kính \(AB.\)Gọi I là tâm đường tròn ngoại tiếp tam giác \(MCE.\)Chứng minh \(M,I,B\)thẳng hàng.
Câu hỏi trong đề: Đề thi Giữa học kỳ 2 Toán 9 !!
Quảng cáo
Trả lời:





Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.