CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biên độ bụng, ta có : \[\begin{array}{l}\omega \sqrt {{A^2} - {u^2}} = \frac{{15\pi }}{{100}}v \Leftrightarrow \frac{{2\pi }}{T}\sqrt {{A^2} - {u^2}} = \frac{{15\pi }}{{100}}\frac{\lambda }{T}\\ \Rightarrow \sqrt {{A^2} - {u^2}} = \frac{{15\lambda }}{{200}} = \frac{{15.60}}{{200}} = 4,5cm.\end{array}\]

\[ = > A = \sqrt {4,{5^2} + {6^2}} = 7,5cm\]

Lời giải

Ta có: \[U = \sqrt {U_R^2 + {{({U_L} - {U_C})}^2}} = {U_R} = {U_L} = {U_C} \Rightarrow \cos \varphi = 1.\]

Lại có cộng hưởng:\[{U_L} = {U_C} = {U_R} = 200V = {Z_C}I = 200.I \Rightarrow I = 1A\]

Do đó\[P = UI\cos \varphi = 200.1.1 = 200W\]. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP