Hướng dẫn
Khi \(C = {C_1}\) thì \(i = q' = 5\sqrt 2 {.10^{ - 4}}.300.\cos \left( {300t + \frac{\pi }{6} + \frac{\pi }{2}} \right) = 0,15\sqrt 2 \cos \left( {300t + \frac{{2\pi }}{3}} \right)\) (A)
\(\left( {R + r} \right) + \left( {{Z_L} - {Z_C}} \right)j = \frac{u}{i} = \frac{{60\sqrt 2 \angle \frac{\pi }{3}}}{{0,15\sqrt 2 \angle \frac{{2\pi }}{3}}} = 200 - 200\sqrt 3 j \Rightarrow R + r = 200\)
Khi \(C = {C_2}\) thì \({U_{R\max }} = \frac{{UR}}{{R + r}} = \frac{{60.150}}{{200}} = 45\) (V).
Chọn C
về câu hỏi!