Câu hỏi:
13/07/2024 581
Hai điện tích \[{q_1}\; = {\rm{ }}{8.10^{ - 8}}\;C\] và \[{q_2}\; = - {8.10^{ - 8}}\;C\] đặt tại A và B trong không khí cách nhau một khoảng AB = 6 cm. Xác định lực điện tác dụng lên \[{q_3}\; = {\rm{ }}{8.10^{ - 8}}\;C\] đặt tại C nếu:
a) CA = 4 cm và CB = 2 cm;
b) CA = 4 cm và CB = 10 cm;
c) CA = CB = 5 cm.
Hai điện tích \[{q_1}\; = {\rm{ }}{8.10^{ - 8}}\;C\] và \[{q_2}\; = - {8.10^{ - 8}}\;C\] đặt tại A và B trong không khí cách nhau một khoảng AB = 6 cm. Xác định lực điện tác dụng lên \[{q_3}\; = {\rm{ }}{8.10^{ - 8}}\;C\] đặt tại C nếu:
a) CA = 4 cm và CB = 2 cm;
b) CA = 4 cm và CB = 10 cm;
c) CA = CB = 5 cm.
Câu hỏi trong đề: 2020 câu Trắc nghiệm tổng hợp Vật lí 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) Ta thấy AB = AC + BC
\[\overrightarrow {{F_3}} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} \]
\[{F_3} = {F_1} + {F_2} = k.\frac{{\left| {{q_1}.{q_3}} \right|}}{{A{C^2}}} + k.\frac{{\left| {{q_2}.{q_3}} \right|}}{{B{C^2}}}\]
\[{F_3} = {9.10^9}.\left( {\frac{{\left| {{{8.10}^{ - 8}}{{.8.10}^{ - 8}}} \right|}}{{{{0,04}^2}}} + \frac{{\left| {{{8.10}^{ - 8}}.\left( { - {{8.10}^{ - 8}}} \right)} \right|}}{{{{0,02}^2}}}} \right) = 0,18\,\,(N)\]
b, \[CB = AB + AC = 6 + 4\]
\[{F_3} = \left| {{F_1} - {F_2}} \right|\]
\[{F_3} = \left| {k.\frac{{{q_1}.{q_3}}}{{A{C^2}}} - k.\frac{{{q_2}.{q_3}}}{{B{C^2}}}} \right|\]
\[{F_3} = \left| {{{9.10}^9}.{{({{8.10}^{ - 8}})}^2}\left( {\frac{1}{{{{0,04}^2}}} - \frac{1}{{{{0,1}^2}}}} \right)} \right| = 0,03024(N)\]
c. \[CA = CB = 5\,\,(cm)\]
\[\cos \alpha = \frac{{{5^2} + {5^2} - {6^2}}}{{2.5.5}} = \frac{7}{{25}}\]
\[F_3^2 = F_1^2 + F_2^2 + 2{F_1}{F_2}\cos \beta \]
\[F_3^2 = 2F_1^2(1 - \cos \alpha )\]
\[{F_3} = {F_1}\sqrt {2(1 - \cos \alpha )} = k.\frac{{{q_1}.{q_3}}}{{{r^2}}}\sqrt {2(1 - \cos \alpha )} \]
\[{F_3} = {9.10^9}.\frac{{{{\left( {{{8.10}^{ - 8}}} \right)}^2}}}{{{{0,05}^2}}}\sqrt {2\left( {1 - \frac{7}{{25}}} \right)} = 0,028(N)\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
\(\frac{T}{4} = 0,5 \Rightarrow T = 2\)
\({{\rm{W}}_{\rm{d}}} = 3{W_t} \Rightarrow {{\rm{W}}_t} = \frac{{\rm{W}}}{4} \Rightarrow \frac{1}{2}k{x^2} = \frac{1}{4}.\frac{1}{2}k{A^2} \Rightarrow \left| x \right| = \frac{A}{2}\)
Khoảng thời gian nhỏ nhất giữa hai lần động năng bằng ba lần thế năng được tính từ vị trí \[\frac{A}{2}\] đến \[ - \frac{A}{2}\] (đối xứng với nhau qua VTCB) \( \Rightarrow \frac{T}{6} = \frac{1}{3}s\)\(\)
Lời giải
Lời giải:
Ta có: \[S = {v_o}t + \frac{1}{2}a{t^2}\]
Khi vật dừng lại: \[v = {v_0} + at = 0 \Rightarrow {v_0} = - at\] (1)
Quãng đường đi trong một giây đầu tiên: \[{S_1} = {v_0} + \frac{1}{2}a = 95\left( m \right)\] (2)
Quãng đường vật đi trong giây cuối là:
\[{S_2} = S - {S_{t - 1}} = {v_0}t + \frac{1}{2}a{t^2} - {v_0}\left( {t - 1} \right) - \frac{1}{2}a{\left( {t - 1} \right)^2} = {v_0} + at - \frac{1}{2}a = 5\left( m \right)\] (3)
Từ (1), (2), (3): \[\left\{ \begin{array}{l} - at + \frac{1}{2}a = 95\\ - \frac{1}{2}a = 5\end{array} \right. \Rightarrow \left\{ \begin{array}{l}t = 10\,s\\a = - 10\,m/{s^2}\end{array} \right. \Rightarrow {v_0} = 100\,m/s\]
Quãng đường ô tô đi được cho đến khi dừng hẳn: \[S = 100.10 - \frac{1}{2}{.10.10^2} = 500\,m\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.