Câu hỏi:

28/06/2023 2,730 Lưu

Trên mặt nước, tại hai điểm \({{\rm{S}}_1}\)\({{\rm{S}}_2}\) cách nhau \(21{\rm{\;cm}}\) có hai nguồn kết hợp dao động cùng pha. Gọi \(\left( {\rm{C}} \right)\) là đường tròn tâm \({{\rm{S}}_1}\), bán kính \({{\rm{S}}_1}{{\rm{S}}_2}\)\({\rm{\Delta }}\) là đường thẳng trên mặt nước, đi qua \({{\rm{S}}_1}\) và vuông góc với \({{\rm{S}}_1}{{\rm{S}}_2}\). Trên đường tròn \(\left( {\rm{C}} \right)\) có 20 điểm dao động với biên độ cực tiểu, trong đó điểm gần \({{\rm{S}}_2}\) nhất cách \({{\rm{S}}_2}{\rm{\;}}3{\rm{\;cm}}\). Trên đường tròn \(\left( {\rm{C}} \right)\), điểm dao động với biên độ cực đại cách \({\rm{\Delta }}\) một đoạn ngắn nhất bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trên mặt nước, tại hai điểm S1 và S2 cách nhau 21 cm có hai nguồn kết hợp (ảnh 1)

Trên (C) có 20 cực tiểu \( \Rightarrow \)trên \({S_1}{S_2}\) có 10 cực tiểu

\( \Rightarrow \)cực tiểu gần \({S_2}\) nhất có bậc 4,5

\( \Rightarrow {d_1} - {d_2} = 4,5\lambda \Rightarrow 21 - 3 = 4,5\lambda \Rightarrow \lambda = 4cm\)

Giao điểm của \(\Delta \) với (C) có bậc là \(k = \frac{{21\sqrt 2 - 21}}{4} \approx 2,2\)

\( \Rightarrow \) cực đại gần \(\Delta \) có bậc là 2 hoặc 3

\( \Rightarrow \left[ \begin{array}{l}{d_2} - {d_1} = 2\lambda \\{d_2} - {d_1} = 3\lambda \end{array} \right. \Rightarrow \left[ \begin{array}{l}{d_2} - 21 = 2.4\\{d_2} - 21 = 3.4\end{array} \right. \Rightarrow \left[ \begin{array}{l}{d_2} = 29cm\\{d_2} = 33cm\end{array} \right.\)

Khoảng cách đến \(\Delta \)\(\left| {\frac{{d_2^2 - d_1^2}}{{2{S_1}{S_2}}} - \frac{{{S_1}{S_2}}}{2}} \right| = \left| {\frac{{d_2^2 - {{21}^2}}}{{2.21}} - \frac{{21}}{2}} \right| = \left[ \begin{array}{l} \approx 0,98cm\\ \approx 4,9cm\end{array} \right.\). Chọn B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(i = \frac{{\lambda D}}{a} = \frac{{0,5.1}}{{0,4}} = 1,25mm\)

\( - \frac{L}{2} \le ki \le \frac{L}{2} \Rightarrow - \frac{{13}}{2} \le k.1,25 \le \frac{{13}}{2} \Rightarrow - 5,2 < k < 5,2 \to \)có 11 giá trị k nguyên. Chọn D

Lời giải

Giả sử ban đầu có 1 mol Po \( \Rightarrow {m_{Po}} = 210g \to \)khối lượng mẫu ban đầu là \({m_0} = \frac{{210}}{{0,4}} = 525g\)

\(525g\left\{ \begin{array}{l}Po:{\rm{ }}1mol\\Tapchat\end{array} \right. \to \left\{ \begin{array}{l}Po:{\rm{ }}{2^{\frac{{ - t}}{T}}}{\rm{ }}mol{\rm{ }}\\Pb:{\rm{ }}1 - {2^{\frac{{ - t}}{T}}}{\rm{ }}mol\\Tapchat{\rm{ }}\\{\rm{   }}\end{array} \right.{\rm{ }} + {\rm{ }}\alpha :{\rm{ }}1 - {2^{\frac{{ - t}}{T}}}{\rm{ }}mol\)

\(\frac{{{m_{Po}}}}{{{m_{m\^a u}}}} = \frac{{{m_{Po}}}}{{{m_0} - {m_\alpha }}} = \frac{{{{210.2}^{\frac{{ - t}}{T}}}}}{{525 - 4.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right)}} \Rightarrow \left\{ \begin{array}{l}0,3 = \frac{{{{210.2}^{\frac{{ - {t_1}}}{{138}}}}}}{{525 - 4.\left( {1 - {2^{\frac{{ - {t_1}}}{{138}}}}} \right)}}\\0,15 = \frac{{{{210.2}^{\frac{{ - {t_2}}}{{138}}}}}}{{525 - 4.\left( {1 - {2^{\frac{{ - {t_2}}}{{138}}}}} \right)}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{t_1} \approx 57,66\\{t_2} \approx 196,23\end{array} \right.\) (ngày)

Vậy \({t_2} - {t_1} = 196,23 - 57,66 = 138,57\) (ngày). Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP