Câu hỏi:

03/07/2023 128

Hai mô tả sau đây chỉ ra phương pháp hiệu quả giải quyết bài toán bổ và đếm số hại dưa bằng ý tưởng kí thuật chia để trị. Em hãy tìm hiểu bài toán sau đây và rút ra ý tưởng chủ đạo của kĩ thuật chia để trị để giải quyết bài toán.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách giải quyết bài toán trên thể hiện ý tưởng chia đề trị, bao gồm 3 bước:

1. Chia: Chia bài toán bạn đầu (phức tạp) thành hai hoặc nhiều bài toán con (đơn gián hơn). Tiếp tục chia mỗi bài toán con thành các bài toán con đơn gian hơn nữa và cứ như thể cho đến khi đạt được các bài toán con đủ đơn giản mà chúng được giải quyết một cách dễ dàng

2 Trị: Giải quyết các bài toán cơn (một cách đệ quy). kết quả là các lời giải cua các bài toán con.

3. Kết hợp: Kết hợp eắc lời giải của các bài toán con để có được lời giải của bài toán ban đầu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong thuật toán tìm kiếm nhị phân tìm một phần tử có giá trị x trong dãy số có 20 phân tử, em hãy cho biết sau hai bước lặp chia đôi để tìm kiếm mà vẫn chưa tìm được giá trị x đó thì độ lớn không gian tìm kiếm còn lại (tức là độ dài đoạn dãy số cần tìm) là bao nhiêu?

A.2       B4      C.5       D8

Xem đáp án » 03/07/2023 216

Câu 2:

Em hãy viết chương trình tìm kiếm nhị phân giá trị x trong dãy số không giảm A có n phân tử, các phần tử có thể trùng nhau: kết quả là hiện thị chỉ số nhỏ nhất 7 sao cho Ai = x hoặc hiển thị thông báo không tìm thấy x.

Xem đáp án » 03/07/2023 176

Câu 3:

Trong sách Tin học 7, em đã học thuật toán tìm kiếm nhị phân. Thuật toán này là một kĩ thuật thu hẹp phạm vi tìm kiếm trong phương pháp chia để trị. Em hãy quan sát dãy 9 số được sắp xếp tăng dần sau:

4   7  8  20   21  22  36  77  81

Số 21 ở vị trí chính giữa của dãy, các số bên trái của số 21 luôn nhỏ hơn 21 và các số bên phải của số 21 luôn lớn hơn 21. Do đó, nếu muốn tìm một số x nhỏ hơn 21 thì chỉ cần thu hẹp phạm vi tìm kiếm vào một nửa của dãy, theo em đó là nửa dãy bên trái hay nửa dãy bên phải của số 21?

Xem đáp án » 03/07/2023 133

Câu 4:

Trong các bài toán tìm kiếm trên một không gian xác định, thu hẹp dần phạm vi tìm kiếm là một kĩ thuật của ý tưởng chia để trị. Em hãy tìm hiểu bài toán sau đây và cho biết ý tưởng chia để trị được thể hiện trong kĩ thuật thu hẹp phạm vi tìm kiếm.

Xem đáp án » 03/07/2023 120

Câu 5:

Hai công thức tính chỉ số i trong hai chương trình của hình 5 và Hình 6 có khác nhau. Em hãy cho biết hai chương trình này có cùng kết quả tìm kiếm không.

Xem đáp án » 03/07/2023 110

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL