Một người đã vẽ xong bức tranh một con thiên nga đang bơi trên mặt hồ (đường thẳng d) (Hình 7a). Người đó muốn vẽ bóng của con thiên nga đó xuống mặt nước (như Hình 7b) bằng cách gấp tờ giấy theo đường thẳng d và đồ theo hình con thiên nga trên nửa tờ giấy còn lại. Chứng tỏ rằng đây là một phép dời hình.
Một người đã vẽ xong bức tranh một con thiên nga đang bơi trên mặt hồ (đường thẳng d) (Hình 7a). Người đó muốn vẽ bóng của con thiên nga đó xuống mặt nước (như Hình 7b) bằng cách gấp tờ giấy theo đường thẳng d và đồ theo hình con thiên nga trên nửa tờ giấy còn lại. Chứng tỏ rằng đây là một phép dời hình.

Quảng cáo
Trả lời:
Ta đặt f là phép biến hình biến con thiên nga trong bức tranh thành bóng của con thiên nga đó qua đường thẳng d (mặt hồ).
Chọn M’ = f(M) hay M’ là điểm đối xứng của M qua d.
Suy ra d là đường trung trực của đoạn thẳng MM’.
Gọi H là giao điểm của MM’ và d.
Khi đó H là trung điểm của MM’ và MM’ ⊥ d tại H.
Trên hình 7b, chọn điểm N tùy ý trên con thiên nga đã vẽ trên mặt hồ (như hình vẽ).

Chọn N’ = f(N) hay N’ là điểm đối xứng của N qua d.
Suy ra d là đường trung trực của đoạn thẳng NN’.
Gọi K là giao điểm của NN’ và d.
Khi đó K là trung điểm của NN’ và NN’ ⊥ d tại K.
Ta có
(do H, K lần lượt là trung điểm của MM’, NN’)
.
Lại có .
Ta có
(do MM’ ⊥ d và NN’ ⊥ d).
Suy ra .
Do đó MN = M’N’.
Vì vậy phép biến hình f bảo toàn khoảng cách giữa hai điểm bất kì.
Vậy ta có điều phải chứng minh.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta đặt f là phép chiếu vuông góc lên d.
Vì A, B là giao điểm của đường thẳng d và đường tròn (C) nên A = f(A), B = f(B) (1)
Lấy điểm M ∈ (C) sao cho M ≠ A và M ≠ B.
Kẻ MM’ ⊥ d tại M’.
Khi đó ta có M’ = f(M).
Mà AB là đường kính của đường tròn (C) nên M’ nằm trên đoạn thẳng AB.
Tương tự như vậy, mỗi điểm N bất kì di động trên đường tròn (C) sao cho N ≠ A và N ≠ B thì ảnh N’ của N qua f đều nằm trên đoạn thẳng AB (2)
Từ (1), (2), ta thu được ảnh của đường tròn (C) qua phép chiếu vuông góc lên d là đoạn thẳng AB hay f((C)) = AB.
Lời giải
Lấy hai điểm bất kì M(x1; y1) và N(x2; y2).
Suy ra .
– Ta có ảnh của M, N qua phép biến hình f lần lượt là M’(–x1; –y1), N’(–x2; –y2).
Khi đó .
Vì vậy f là một phép dời hình.
– Ta có ảnh của M, N qua phép biến hình g lần lượt là M’(2x1; 2y1), N’(2x2; 2y2).
Khi đó .
.
Vì vậy g không phải là một phép dời hình.
Vậy trong hai phép biến hình đã cho, phép dời hình là f.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.