Trong mỗi trường hợp dưới đây, cho f là một phép dời hình.
a) Cho ba điểm A, B, C thẳng hàng theo thứ tự (B nằm giữa A và C). Gọi A’, B’, C’ lần lượt là ảnh của A, B, C qua f (Hình 8a). Có nhận xét gì về vị trí tương đối của ba điểm A’, B’, C’?
b) Cho hai đường thẳng song song d1 và d2, lấy hai đoạn thẳng bằng nhau AB và DC lần lượt trên d1 và d2. Gọi lần lượt là ảnh của d1, d2 và A’, B’, C’, D’ lần lượt là ảnh của A, B, C, D qua f (Hình 8b). Tứ giác A’B’C’D’ là hình gì? Nêu nhận xét về vị trí tương đối của hai đường thẳng .
c) Cho A’B’C’ là ảnh của tam giác ABC qua f (Hình 8c).
So sánh ∆A’B’C’ và ∆ABC. So sánh số đo hai góc và .
Trong mỗi trường hợp dưới đây, cho f là một phép dời hình.
a) Cho ba điểm A, B, C thẳng hàng theo thứ tự (B nằm giữa A và C). Gọi A’, B’, C’ lần lượt là ảnh của A, B, C qua f (Hình 8a). Có nhận xét gì về vị trí tương đối của ba điểm A’, B’, C’?
b) Cho hai đường thẳng song song d1 và d2, lấy hai đoạn thẳng bằng nhau AB và DC lần lượt trên d1 và d2. Gọi lần lượt là ảnh của d1, d2 và A’, B’, C’, D’ lần lượt là ảnh của A, B, C, D qua f (Hình 8b). Tứ giác A’B’C’D’ là hình gì? Nêu nhận xét về vị trí tương đối của hai đường thẳng .
c) Cho A’B’C’ là ảnh của tam giác ABC qua f (Hình 8c).
So sánh ∆A’B’C’ và ∆ABC. So sánh số đo hai góc và .

Quảng cáo
Trả lời:
Phép dời hình f bảo toàn khoảng cách giữa hai điểm bất kì.
a) Ta có A’, B’, C’ lần lượt là ảnh của A, B, C qua phép dời hình f.
Suy ra A’B’ = AB; B’C’ = BC và A’C’ = AC.
Theo đề, ta có ba điểm A, B, C thẳng hàng theo thứ tự (B nằm giữa A và C).
Suy ra AB + BC = AC.
Khi đó A’B’ + B’C’ = A’C’.
Vậy ba điểm A’, B’, C’ thẳng hàng theo thứ tự (B’ nằm giữa A’ và C’).
b) Ta có AB = DC (giả thiết) và AB // DC (do d1 // d2).
Suy ra tứ giác ABCD là hình bình hành.
Khi đó AD = BC.
Ta có A’, B’, C’, D’ lần lượt là ảnh của A, B, C, D qua phép dời hình f.
Suy ra A’B’ = AB; D’C’ = DC.
Mà AB = DC (giả thiết), do đó A’B’ = D’C’ (1)
Chứng minh tương tự, ta được A’D’ = B’C’ (2)
Từ (1), (2), suy ra tứ giác A’B’C’D’ là hình bình hành.
Khi đó A’B’ // D’C’ hay .
Vậy tứ giác A’B’C’D’ là hình bình hành và .
c) Ta có tam giác A’B’C’ là ảnh của tam giác ABC qua phép dời hình f.
Suy ra A’, B’, C’ lần lượt là ảnh của A, B, C qua phép dời hình f.
Vì vậy A’B’ = AB; B’C’ = BC và A’C’ = AC.
Do đó ∆A’B’C’ = ∆ABC (c.c.c).
Từ đó suy ra (cặp cạnh tương ứng).
Vậy ∆A’B’C’ = ∆ABC và .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta đặt f là phép chiếu vuông góc lên d.
Vì A, B là giao điểm của đường thẳng d và đường tròn (C) nên A = f(A), B = f(B) (1)
Lấy điểm M ∈ (C) sao cho M ≠ A và M ≠ B.
Kẻ MM’ ⊥ d tại M’.
Khi đó ta có M’ = f(M).
Mà AB là đường kính của đường tròn (C) nên M’ nằm trên đoạn thẳng AB.
Tương tự như vậy, mỗi điểm N bất kì di động trên đường tròn (C) sao cho N ≠ A và N ≠ B thì ảnh N’ của N qua f đều nằm trên đoạn thẳng AB (2)
Từ (1), (2), ta thu được ảnh của đường tròn (C) qua phép chiếu vuông góc lên d là đoạn thẳng AB hay f((C)) = AB.
Lời giải
Lấy hai điểm bất kì M(x1; y1) và N(x2; y2).
Suy ra .
– Ta có ảnh của M, N qua phép biến hình f lần lượt là M’(–x1; –y1), N’(–x2; –y2).
Khi đó .
Vì vậy f là một phép dời hình.
– Ta có ảnh của M, N qua phép biến hình g lần lượt là M’(2x1; 2y1), N’(2x2; 2y2).
Khi đó .
.
Vì vậy g không phải là một phép dời hình.
Vậy trong hai phép biến hình đã cho, phép dời hình là f.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.