Câu hỏi:

13/07/2024 737

Gọi A’B’C’D’ là ảnh của hình chữ nhật ABCD qua phép biến hình được diễn tả trong Vận dụng. Hãy cho biết A’B’C’D’ là hình gì. Giải thích.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A’B’C’D’ là ảnh của hình chữ nhật ABCD qua phép biến hình được diễn tả trong Vận dụng. Hãy cho biết A’B’C’D’ là hình gì. Giải thích. (ảnh 1)

Gọi f là phép biến hình trong Vận dụng.

Trong Vận dụng, ta đã chứng minh được f là một phép dời hình.

Ta có ABCD là hình chữ nhật.

Suy ra DAB^=90°;  ABC^=90°;  BCD^=90°.

Do phép dời hình f bảo toàn độ lớn của góc nên ta có D'A'B'^=90°; A'B'C'^=90°; B'C'D'^=90°.

Vậy A’B’C’D’ cũng là hình chữ nhật.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường thẳng d đi qua tâm O của đường tròn (C) và cắt (C) tại A và B. Tìm ảnh của đường tròn (C) qua phép chiếu vuông góc lên d. (ảnh 1)

Ta đặt f là phép chiếu vuông góc lên d.

Vì A, B là giao điểm của đường thẳng d và đường tròn (C) nên A = f(A), B = f(B) (1)

Lấy điểm M (C) sao cho M ≠ A và M ≠ B.

Kẻ MM’ d tại M’.

Khi đó ta có M’ = f(M).

Mà AB là đường kính của đường tròn (C) nên M’ nằm trên đoạn thẳng AB.

Tương tự như vậy, mỗi điểm N bất kì di động trên đường tròn (C) sao cho N ≠ A và N ≠ B thì ảnh N’ của N qua f đều nằm trên đoạn thẳng AB (2)

Từ (1), (2), ta thu được ảnh của đường tròn (C) qua phép chiếu vuông góc lên d là đoạn thẳng AB hay f((C)) = AB.

Lời giải

Lấy hai điểm bất kì M(x1; y1) và N(x2; y2).

Suy ra MN=x2x12+y2y12.

– Ta có ảnh của M, N qua phép biến hình f lần lượt là M’(–x1; –y1), N’(–x2; –y2).

Khi đó M'N'=x2+x12+y2+y12=x2x12+y2y12=MN.

Vì vậy f là một phép dời hình.

– Ta có ảnh của M, N qua phép biến hình g lần lượt là M’(2x1; 2y1), N’(2x2; 2y2).

Khi đó M'N'=2x22x12+2y22y12=4x2x12+4y2y12.

=2x2x12+y2y12=2MNMN.

Vì vậy g không phải là một phép dời hình.

Vậy trong hai phép biến hình đã cho, phép dời hình là f.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay