Câu hỏi:

11/07/2024 1,274

Cho mặt phẳng (P), điểm M, đoạn thẳng AB và đường thẳng a. Xác định hình chiếu vuông góc trên mặt phẳng (P) của:

a) Điểm M;

b) Đoạn thẳng AB;

c) Đường thẳng a.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

+) TH1: Điểm M thuộc mặt phẳng (P) thì hình chiếu vuông góc của M lên mặt phẳng (P) là chính nó.

+) TH2: Điểm M không thuộc mặt phẳng (P).

Từ M kẻ đường thẳng vuông góc với mặt phẳng (P), đường thẳng này cắt mặt phẳng (P) tại H. Vậy H là hình chiếu vuông góc của điểm M lên mặt phẳng (P).

Cho mặt phẳng (P), điểm M, đoạn thẳng AB và đường thẳng a. Xác định hình chiếu vuông góc trên mặt phẳng (P) của: a) Điểm M;  b) Đoạn thẳng AB;  c) Đường thẳng a.  (ảnh 1)

b) Tùy theo vị trí của đoạn thẳng so với mặt phẳng hình chiếu, ta có 3 trường hợp:

+) TH1: Đoạn thẳng xiên với mặt phẳng hình chiếu: hình chiếu của nó là đoạn thẳng không song song và có độ dài không bằng nó (A'B' < AB).

Cho mặt phẳng (P), điểm M, đoạn thẳng AB và đường thẳng a. Xác định hình chiếu vuông góc trên mặt phẳng (P) của: a) Điểm M;  b) Đoạn thẳng AB;  c) Đường thẳng a.  (ảnh 2)

+) TH2: Đoạn thẳng song song với mặt phẳng hình chiếu: hình chiếu của nó là đoạn thẳng song song và có độ dài bằng nó (A'B' = AB).

Cho mặt phẳng (P), điểm M, đoạn thẳng AB và đường thẳng a. Xác định hình chiếu vuông góc trên mặt phẳng (P) của: a) Điểm M;  b) Đoạn thẳng AB;  c) Đường thẳng a.  (ảnh 3)

+) TH3: Đoạn thẳng vuông góc với mặt phẳng hình chiếu: hình chiếu của nó là một điểm (A' ≡ B').

Cho mặt phẳng (P), điểm M, đoạn thẳng AB và đường thẳng a. Xác định hình chiếu vuông góc trên mặt phẳng (P) của: a) Điểm M;  b) Đoạn thẳng AB;  c) Đường thẳng a.  (ảnh 4)

c)

+) TH1: Đường thẳng a nằm trong mặt phẳng (P) thì hình chiếu vuông góc của đường thẳng a trên mặt phẳng (P) là chính nó.

+) TH2: Đường thẳng a cắt mặt phẳng (P).

Gọi M là giao điểm của đường thẳng a và mặt phẳng (P). Lấy điểm B khác M thuộc đường thẳng a, xác định hình chiếu vuông góc H của B trên mặt phẳng (P). Khi đó hình chiếu vuông góc của đường thẳng a lên mặt phẳng (P) là đường thẳng đi qua hai điểm M và H.

Cho mặt phẳng (P), điểm M, đoạn thẳng AB và đường thẳng a. Xác định hình chiếu vuông góc trên mặt phẳng (P) của: a) Điểm M;  b) Đoạn thẳng AB;  c) Đường thẳng a.  (ảnh 5)

Tổng quát:

Cho mặt phẳng (P), điểm M, đoạn thẳng AB và đường thẳng a. Xác định hình chiếu vuông góc trên mặt phẳng (P) của: a) Điểm M;  b) Đoạn thẳng AB;  c) Đường thẳng a.  (ảnh 6)

+) TH3: Đường thẳng a song song với mặt phẳng (P).

Lấy hai điểm A, B khác nhau trên đường thẳng a, xác định hình chiếu vuông góc A', B' lần lượt của A và B trên mặt phẳng (P). Khi đó hình chiếu vuông góc của đường thẳng a trên mặt phẳng (P) là đường thẳng A'B' (A'B' // a).

Cho mặt phẳng (P), điểm M, đoạn thẳng AB và đường thẳng a. Xác định hình chiếu vuông góc trên mặt phẳng (P) của: a) Điểm M;  b) Đoạn thẳng AB;  c) Đường thẳng a.  (ảnh 7)

+) TH4: Đường thẳng a vuông góc với mặt phẳng (P).

Khi đó hình chiếu vuông của đường thẳng a trên mặt phẳng (P) là giao điểm M của a và (P).

Cho mặt phẳng (P), điểm M, đoạn thẳng AB và đường thẳng a. Xác định hình chiếu vuông góc trên mặt phẳng (P) của: a) Điểm M;  b) Đoạn thẳng AB;  c) Đường thẳng a.  (ảnh 8)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hình chóp cụt tứ giác đều:

Vẽ các hình chiếu vuông góc của: a) Hình chóp cụt tứ giác đều; b) Hình nón cụt.  (ảnh 1)

b) Hình nón cụt:

Vẽ các hình chiếu vuông góc của: a) Hình chóp cụt tứ giác đều; b) Hình nón cụt.  (ảnh 2)

Lời giải

Hình chiếu trục đo vuông góc đều của hình tròn nằm trong các mặt phẳng song song với các mặt tọa độ là hình elip theo các hướng khác nhau.

Trong hình chiếu trục đo vuông góc đều tỉ số biến dạng được quy ước: Nếu vẽ theo hệ số biến dạng quy ước (p = q = r = 1) thì các elip đó có trục dài bằng 1,22d và trục ngắn bằng 0,71d (với d là đường kính của đường tròn).

Góc trục đo hình chiếu trục đo của hình tròn:

Hãy xác định hình chiếu trục đo vuông góc đều của những hình tròn nằm trong các mặt phẳng song song với các mặt phẳng tọa độ. (ảnh 1)

Hướng các elip:

Hãy xác định hình chiếu trục đo vuông góc đều của những hình tròn nằm trong các mặt phẳng song song với các mặt phẳng tọa độ. (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay