Câu hỏi:
13/07/2024 2,100Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào không song song với NP?
A. MQ.
B. BD.
C. AD.
D. BC.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Vì M, Q lần lượt là trung điểm của SA, SD nên MQ là đường trung bình của tam giác SAD, do đó MQ // AD. (1)
Vì N, P lần lượt là trung điểm của SB, SC nên NP là đường trung bình của tam giác SBC, do đó NP // BC. (2)
Mà ABCD là hình bình hành nên AD // BC. (3)
Từ (1), (2), (3) suy ra MN, NP, AD và BC đôi một song song.
Vậy trong các đáp án đã cho, đường thẳng BD không song song với NP.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD. Giao tuyến của hai mặt phẳng (CMN) và (BCD) là đường thẳng song song với đường thẳng nào sau đây?
A. BD.
B. CD.
C. BC.
D. AB.
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SC. Trong các đường thẳng sau, đường thẳng nào song song với MN?
A. AB.
B. AD.
C. BD.
D. AC.
Câu 3:
Cho ba đường thẳng a, b, c. Trong các mệnh đề sau, mệnh đề nào đúng?
A. Nếu a và b cùng song song với c thì a song song với b.
B. Nếu a và b cùng chéo nhau với c thì a và b chéo nhau.
C. Nếu a song song với b, b và c chéo nhau thì a và c chéo nhau hoặc cắt nhau.
D. Nếu a và b cắt nhau, b và c cắt nhau thì a và c cắt nhau.
Câu 4:
Cho hình chóp tứ giác S.ABCD. Gọi G, K lần lượt là trọng tâm của các tam giác SAB và SAD; M, N lần lượt là trung điểm của BC và CD. Chứng minh rằng GK // MN.
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K, L lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SAD.
a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành.
b) Chứng minh rằng JL // CD.
c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SCD).
Câu 6:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD và P là một điểm nằm trên CD. Đường thẳng BC cắt mặt phẳng (MNP) tại Q. Chứng minh rằng PQ // BD.
Câu 7:
Hai đường thẳng chéo nhau khi và chỉ khi:
A. Hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung.
B. Hai đường thẳng không có điểm chung.
C. Hai đường thẳng không cùng nằm trong một mặt phẳng nào.
D. Hai đường thẳng cùng chéo nhau với đường thẳng thứ ba.
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận