Câu hỏi:
12/07/2024 418Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024?
A. 1.
B. 2.
C. 3.
D. 4.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Giả sử 5 số hạng của cấp số nhân đó là u1; u2; u3; u4; u5 và công bội của cấp số nhân là q.
+ Nếu q = 0 thì tích các số hạng bằng 0 không thỏa mãn bài toán nên q ≠ 0.
+ Nếu q = 1 thì u1 = u2 = u3 = u4 = u5, do đó u1 + u2 + u3 + u4 + u5 = 5u1 = 31.
Suy ra u1 = u2 = u3 = u4 = u5 = . Khi đó u1 . u2 . u3 . u4 . u5 = . Vô lí.
Vậy q ≠ 1.
+ Với q ≠ {0; 1}. Khi đó u2 = u1q; u3 = u1q2; u4 = u1q3; u5 = u1q4.
Ta có u1 . u2 . u3 . u4 . u5 = = 1 024 = 45. Suy ra u1q2 = 4.
Suy ra .
Lại có u1 + u2 + u3 + u4 + u5 = S5 = .
Suy ra 4(1 – q5) = 31q2(1 – q)
⇔ 4(1 – q)(1 + q + q2 + q3 + q4) – 31q2(1 – q) = 0
⇔ (1 – q) (4 + 4q + 4q2 + 4q3 + 4q4 – 31q2) = 0
⇔ (1 – q)(4q4 + 4q3 – 27q2 + 4q + 4) = 0
Vì q ≠ 1 nên ta loại trường hợp q = 1.
Giải phương trình (*): Chia cả hai vế của (*) cho q2 (do q ≠ 0) ta được
(**)
Đặt , khi đó (**) ⇔ t2 + 2t – 35 = 0 ⇔ t = – 7 hoặc t = 5.
+ Với t = – 7, ta có .
+ Với t = 5, ta có .
Thử lại ta thấy cả 4 giá trị của q đều thỏa mãn (*).
Vậy có 4 cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng này để tổng của chúng bằng 210?
A. 40.
B. 30.
C. 20.
D. 10.
Câu 2:
Hãy chọn dãy số bị chặn trong các dãy số (un) sau:
A. un = 1 – n2.
B. un = 2n.
C. un = n sin n.
D. .
Câu 3:
Ông Trung có 100 triệu đồng gửi tiết kiệm vào ngân hàng theo thể thức lãi kép kì hạn 6 tháng với lãi suất 8% một năm. Giả sử lãi suất không thay đổi. Hỏi sau 3 năm số tiền trong tài khoản tiết kiệm của ông Trung gần nhất với số nào sau đây?
A. 126 532 000 đồng.
B. 158 687 000 đồng.
C. 125 971 000 đồng.
D. 112 486 000 đồng.
Câu 4:
Cho dãy số (un) xác định bởi: u1 = 1, un + 1 = un + n. Số hạng u4 là
A. 5.
B. 6.
C. 7.
D. 10.
Câu 5:
Hãy chọn dãy số tăng trong các dãy số (un) sau:
A. un = – 2n + 1.
B. un = n2 – n + 1.
C.un = (– 1)n 2n.
D. un = 1 + sin n.
Câu 6:
Cho dãy số . Mệnh nào dưới đây là đúng?
A. un + 6 = un.
B. un + 9 = un.
C. un + 4 = un.
D. un + 12 = un.
Câu 7:
Dãy các số chính phương sau đây không phải là cấp số cộng
1, 4, 9, 16, 25, 36, 49, 64, 81, ...
Tuy nhiên, chúng ta có thể lập một cấp số cộng liên quan bằng cách tìm hiệu của các số hạng liên tiếp của dãy số này.
a) Viết tám số hạng đầu của cấp số cộng liên quan được mô tả ở trên. Tìm công thức của số hạng thứ n của cấp số cộng này.
về câu hỏi!