Câu hỏi:

12/07/2024 561

Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024?

A. 1.

B. 2.

C. 3.

D. 4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Giả sử 5 số hạng của cấp số nhân đó là u1; u2; u3; u4; u5 và công bội của cấp số nhân là q.

+ Nếu q = 0 thì tích các số hạng bằng 0 không thỏa mãn bài toán nên q ≠ 0.

+ Nếu q = 1 thì u1 = u2 = u3 = u4 = u5, do đó u1 + u2 + u3 + u4 + u5 = 5u1 = 31.

Suy ra u1 = u2 = u3 = u4 = u5 = 315. Khi đó u1 . u2 . u3 . u4 . u5 = 31551024. Vô lí.

Vậy q ≠ 1.

+ Với q ≠ {0; 1}. Khi đó u2 = u1q; u3 = u1q2; u4 = u1q3; u5 = u1q4.

Ta có u1 . u2 . u3 . u4 . u5 = u15.q1+2+3+4=u15q10=u1q25 = 1 024 = 45. Suy ra u1q2 = 4.

Suy ra u1=4q2.

Lại có u1 + u2 + u3 + u4 + u5 = S5 = u11q51q=4q21q51q=31.

Suy ra 4(1 – q5) = 31q2(1 – q)

4(1 – q)(1 + q + q2 + q3 + q4) – 31q2(1 – q) = 0

(1 – q) (4 + 4q + 4q2 + 4q3 + 4q4 – 31q2) = 0

(1 – q)(4q4 + 4q3 – 27q2 + 4q + 4) = 0

q=14q4+4q327q2+4q+4=0  *

Vì q ≠ 1 nên ta loại trường hợp q = 1.

Giải phương trình (*): Chia cả hai vế của (*) cho q2 (do q ≠ 0) ta được

4q2+4q27+4q+4q2=0

4q2+8+4q2+4q+4q35=0

2q+2q2+22q+2q35=0 (**)

Đặt 2q+2q=t, khi đó (**) t2 + 2t – 35 = 0 t = – 7 hoặc t = 5.

+ Với t = – 7, ta có 2q+2q=72q2+2+7q=0q=7+332q=7332.

+ Với t = 5, ta có 2q+2q=52q2+25q=0q=12q=2.

Thử lại ta thấy cả 4 giá trị của q đều thỏa mãn (*).

Vậy có 4 cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng này để tổng của chúng bằng 210?

A. 40.

B. 30.

C. 20.

D. 10.

Xem đáp án » 12/07/2024 10,857

Câu 2:

Hãy chọn dãy số bị chặn trong các dãy số (un) sau:

A. un = 1 – n2.

B. un = 2n.

C. un = n sin n.

D. un=2nn+1.

Xem đáp án » 12/07/2024 5,646

Câu 3:

Cho dãy số (un) xác định bởi: u1 = 1, un + 1 = un + n. Số hạng u4

A. 5.

B. 6.

C. 7.

D. 10.

Xem đáp án » 12/07/2024 2,869

Câu 4:

Chọn cấp số nhân trong các dãy số (un) sau:

A. un = 2n.

B. un=2n.

C. un = 2n.

D. u1 = 1, un + 1 = nun.

Xem đáp án » 12/07/2024 2,452

Câu 5:

Ông Trung có 100 triệu đồng gửi tiết kiệm vào ngân hàng theo thể thức lãi kép kì hạn 6 tháng với lãi suất 8% một năm. Giả sử lãi suất không thay đổi. Hỏi sau 3 năm số tiền trong tài khoản tiết kiệm của ông Trung gần nhất với số nào sau đây?

A. 126 532 000 đồng.

B. 158 687 000 đồng.

C. 125 971 000 đồng.

D. 112 486 000 đồng.

Xem đáp án » 12/07/2024 2,415

Câu 6:

Hãy chọn dãy số tăng trong các dãy số (un) sau:

A. un = – 2n + 1.

B. un = n2 – n + 1.

C.un = (– 1)n 2n.

D. un = 1 + sin n.

Xem đáp án » 12/07/2024 2,229

Câu 7:

Cho cấp số cộng với u1 = −2, u9 = 22.Tổng của 50 số hạng đầu của cấp số cộng này là

A. 3 570.

B. 3 575.

C. 3 576.

D. 3 580.

Xem đáp án » 12/07/2024 2,024
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua