Câu hỏi:

12/07/2024 574

Có bao nhiêu cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024?

A. 1.

B. 2.

C. 3.

D. 4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Giả sử 5 số hạng của cấp số nhân đó là u1; u2; u3; u4; u5 và công bội của cấp số nhân là q.

+ Nếu q = 0 thì tích các số hạng bằng 0 không thỏa mãn bài toán nên q ≠ 0.

+ Nếu q = 1 thì u1 = u2 = u3 = u4 = u5, do đó u1 + u2 + u3 + u4 + u5 = 5u1 = 31.

Suy ra u1 = u2 = u3 = u4 = u5 = 315. Khi đó u1 . u2 . u3 . u4 . u5 = 31551024. Vô lí.

Vậy q ≠ 1.

+ Với q ≠ {0; 1}. Khi đó u2 = u1q; u3 = u1q2; u4 = u1q3; u5 = u1q4.

Ta có u1 . u2 . u3 . u4 . u5 = u15.q1+2+3+4=u15q10=u1q25 = 1 024 = 45. Suy ra u1q2 = 4.

Suy ra u1=4q2.

Lại có u1 + u2 + u3 + u4 + u5 = S5 = u11q51q=4q21q51q=31.

Suy ra 4(1 – q5) = 31q2(1 – q)

4(1 – q)(1 + q + q2 + q3 + q4) – 31q2(1 – q) = 0

(1 – q) (4 + 4q + 4q2 + 4q3 + 4q4 – 31q2) = 0

(1 – q)(4q4 + 4q3 – 27q2 + 4q + 4) = 0

q=14q4+4q327q2+4q+4=0  *

Vì q ≠ 1 nên ta loại trường hợp q = 1.

Giải phương trình (*): Chia cả hai vế của (*) cho q2 (do q ≠ 0) ta được

4q2+4q27+4q+4q2=0

4q2+8+4q2+4q+4q35=0

2q+2q2+22q+2q35=0 (**)

Đặt 2q+2q=t, khi đó (**) t2 + 2t – 35 = 0 t = – 7 hoặc t = 5.

+ Với t = – 7, ta có 2q+2q=72q2+2+7q=0q=7+332q=7332.

+ Với t = 5, ta có 2q+2q=52q2+25q=0q=12q=2.

Thử lại ta thấy cả 4 giá trị của q đều thỏa mãn (*).

Vậy có 4 cấp số nhân có năm số hạng mà tổng của năm số hạng đó là 31 và tích của chúng là 1 024.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi số hạng thứ 2, thứ 9 và thứ 44 của cấp số cộng này là u2, u9, u44. Giả sử cấp số cộng có số hạng đầu là u1 và công sai là d. Khi đó ta có:

u2 = u1 + d;

u9 = u1 + 8d = (u1 + d) + 7d = u2 + 7d;

 u44 = u1 + 43d = (u1 + d) + 42d = u2 + 42d.

Vì 3 số này là các số hạng liên tiếp của một cấp số nhân nên ta có: 

u2u44=u92 hay u2(u2 + 42d) = (u2 + 7d)2.

Và tổng của 3 số đó là 217 nên u2 + u9 + u44 = u2 + u2 + 7d + u2 + 42d = 3u2 + 49d = 217.

Vậy ta có hệ u2u2+42d=u2+7d23u2+49d=217u2=7d=4.

Do đó u1 = u2 – d = 7 – 4 = 3.

Gọi n số hạng đầu của cấp số cộng có tổng là 210.

Khi đó Sn=n22u1+n1d hay 210=n22.3+n1.4  210 = n(2n + 1)

2n2 + n – 210 = 0 n=10n=212.

Vì n nguyên dương nên n = 10. Vậy phải lấy 10 số hạng đầu của cấp số cộng này để tổng của chúng bằng 210.

Lời giải

Đáp án đúng là: D

Xét từng đáp án, ta thấy dãy số ở đáp án D là dãy số bị chặn. Thật vậy:

Ta có un=2nn+1=n+1+3n+1=1+3n+1.

Vì n > 0 nên 3n+1>0. Suy ra 1+3n+1>1.

Vì n ≥ 1 nên n + 1 ≥ 2 3n+1321+3n+112.

Vậy 1<un12 nên dãy số này bị chặn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay