Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
c) Từ công thức truy hồi Tn + 1 = Tn + 2 suy ra Tn + 1 – Tn = 2 không đổi ∀ n ≥ 1.
Do đó, dãy số (Tn) là cấp số cộng có số hạng đầu T1 = 10 và công sai d = 2.
Suy ra, công thức tổng quát của dãy số là
Tn = T1 + (n − 1)d = 10 + (n – 1).2 = 8 + 2n ∀ n ≥ 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng này để tổng của chúng bằng 210?
A. 40.
B. 30.
C. 20.
D. 10.
Câu 2:
Hãy chọn dãy số bị chặn trong các dãy số (un) sau:
A. un = 1 – n2.
B. un = 2n.
C. un = n sin n.
D. .
Câu 3:
Ông Trung có 100 triệu đồng gửi tiết kiệm vào ngân hàng theo thể thức lãi kép kì hạn 6 tháng với lãi suất 8% một năm. Giả sử lãi suất không thay đổi. Hỏi sau 3 năm số tiền trong tài khoản tiết kiệm của ông Trung gần nhất với số nào sau đây?
A. 126 532 000 đồng.
B. 158 687 000 đồng.
C. 125 971 000 đồng.
D. 112 486 000 đồng.
Câu 4:
Cho dãy số (un) xác định bởi: u1 = 1, un + 1 = un + n. Số hạng u4 là
A. 5.
B. 6.
C. 7.
D. 10.
Câu 5:
Hãy chọn dãy số tăng trong các dãy số (un) sau:
A. un = – 2n + 1.
B. un = n2 – n + 1.
C.un = (– 1)n 2n.
D. un = 1 + sin n.
Câu 6:
Cho dãy số . Mệnh nào dưới đây là đúng?
A. un + 6 = un.
B. un + 9 = un.
C. un + 4 = un.
D. un + 12 = un.
Câu 7:
Dãy các số chính phương sau đây không phải là cấp số cộng
1, 4, 9, 16, 25, 36, 49, 64, 81, ...
Tuy nhiên, chúng ta có thể lập một cấp số cộng liên quan bằng cách tìm hiệu của các số hạng liên tiếp của dãy số này.
a) Viết tám số hạng đầu của cấp số cộng liên quan được mô tả ở trên. Tìm công thức của số hạng thứ n của cấp số cộng này.
về câu hỏi!