Một con lắc lò xo gồm vật nhỏ có khối lượng \({\rm{m}} = 0,03{\rm{\;kg}}\) và lò xo có độ cứng \({\rm{k}} = 1,5{\rm{\;N}}/{\rm{m}}\). Vật nhỏ được đặt trên giá đỡ cố định nằm ngang dọc theo trục của lò xo. Hệ số ma sát trượt giữa giá đỡ và vật nhỏ là \(\mu = 0,2\). Ban đầu, giữ vật ở vị trí lò xo bị dãn một đoạn \({\rm{\Delta }}{l_0} = 15{\rm{\;cm}}\) rồi buông nhẹ để con lắc dao động tắt dần. Lấy \({\rm{g}} = 10{\rm{\;m}}/{{\rm{s}}^2}\). Tính tốc độ lớn nhất mà vật nhỏ đạt được trong quá trình dao động.
Một con lắc lò xo gồm vật nhỏ có khối lượng \({\rm{m}} = 0,03{\rm{\;kg}}\) và lò xo có độ cứng \({\rm{k}} = 1,5{\rm{\;N}}/{\rm{m}}\). Vật nhỏ được đặt trên giá đỡ cố định nằm ngang dọc theo trục của lò xo. Hệ số ma sát trượt giữa giá đỡ và vật nhỏ là \(\mu = 0,2\). Ban đầu, giữ vật ở vị trí lò xo bị dãn một đoạn \({\rm{\Delta }}{l_0} = 15{\rm{\;cm}}\) rồi buông nhẹ để con lắc dao động tắt dần. Lấy \({\rm{g}} = 10{\rm{\;m}}/{{\rm{s}}^2}\). Tính tốc độ lớn nhất mà vật nhỏ đạt được trong quá trình dao động.
Quảng cáo
Trả lời:
Vật đạt tốc độ lớn nhất tại vị trí O mà lực ma sát cân bằng với lực đàn hồi của lò xo, khi đó vật còn cách vị trí mà lò xo không biến dạng một đoạn \({\rm{\Delta }}l\) xác định bởi:
\(\mu {\rm{mg}} = {\rm{k}} \cdot {\rm{\Delta }}l \Rightarrow {\rm{\Delta }}l = \frac{{\mu {\rm{mg}}}}{{\rm{k}}} = \frac{{0,2 \cdot 0,03 \cdot 10}}{{1,5}} = 0,04{\rm{\;m}}{\rm{.\;}}\)
Công của lực ma sát trên đoạn \({\rm{\Delta }}{l_0} - {\rm{\Delta }}l\) đó bằng độ giảm cơ năng khi vật đi từ vị trí ban đầu tới vị trí cân bằng nói trên:
\[ - \mu {\rm{mg}}\left( {{\rm{\Delta }}{l_0} - {\rm{\Delta }}l} \right)\; = \frac{{{\rm{mv}}_{\max }^2}}{2} + \frac{{{\rm{k}} \cdot {\rm{\Delta }}{l^2}}}{2}\; - \frac{{{\rm{k}} \cdot {\rm{\Delta }}l_0^2}}{2}\]
Thay số: \( - 0,1 \cdot 0,03 \cdot 10\left( {0,15 - 0,04} \right) = \frac{{0,03v_{{\rm{max}}}^2}}{2} + \frac{{1,5 \cdot 0,{{04}^2}}}{2} - \frac{{1,5 \cdot 0,{{15}^2}}}{2}\)
Suy ra: \({v_{{\rm{max}}}} = 0,91{\rm{\;m}}/{\rm{s}} = 91{\rm{\;cm}}/{\rm{s}}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Hai bước đi là một chu kì. Chu kì dao động riêng của nước trong xô là:
\({\rm{T}} = \frac{{2L}}{{{\rm{\;V}}}} = \frac{{2 \cdot 0,5}}{{0,69}} \approx 1,44{\rm{\;s}}{\rm{.\;}}\)
Lời giải
Đáp án đúng là C
Nguyên nhân của dao động tắt dần là do lực cản của môi trường, trong bài toán này là lực ma sát. Độ giảm cơ năng sau một nửa chu kì bằng công của lực ma sát thực hiện trong chu kì đó, ta có:
\(\frac{1}{2}m{\omega ^2}{A^2} - \frac{1}{2}m{\omega ^2}{A^{{\rm{'}}2}} = {F_{ms}}\left( {A + A'} \right) \Leftrightarrow \frac{1}{2}m{\omega ^2}\left( {A + A'} \right)\left( {A - A'} \right) = {F_{ms}}\left( {A + A'} \right)\)
\(\; \Rightarrow {\rm{\Delta }}A = \frac{{2{F_{ms}}}}{k} = \frac{{2\mu mg}}{k}\)
Độ giảm biên độ sau mỗi lần qua vị trí cân bằng:
\(\frac{{{\rm{\Delta A}}}}{2} = \frac{{2\mu {\rm{mg}}}}{{\rm{k}}} = \frac{{2 \cdot 0,01 \cdot 0,1 \cdot 10}}{{100}} = 0,2 \cdot {10^{ - 3}}{\rm{\;m}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.