Câu hỏi:

13/07/2024 1,488

Một sóng ngang truyền trên một sợi dây rất dài từ \(P\) đến \(Q\). Hai điểm \(P,Q\) trên phương truyền sóng cách nhau \(PQ = \frac{{5\lambda }}{4}\). Kết luận nào sau đây là đúng?

A. Khi \(P\) có li độ cực đại thì \(Q\) có vận tốc cực đại.

B. Li độ \(P,Q\) luôn trái dấu.

C. Khi \(Q\) có li độ cực đại thì \(P\) có vận tốc cực đại.

D. Khi \(P\) có li độ cực đại thì \(Q\) qua vị trí cân bằng theo chiều âm. Khi \(Q\) có li độ cực đại thì \({\rm{P}}\) qua vị trí cân bằng theo chiều dương.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là A

Sử dụng đồ thị li độ - quãng đường Hình 9.2Ga, b.

Một sóng ngang truyền trên một sợi dây rất dài từ P đến Q. Hai điểm P, Q trên (ảnh 1)

Ta thấy theo Hình 9.2Ga, khi Q có li độ cực đại thì P qua vị trí cân bằng theo chiều âm; theo Hình 9.2Gb thì khi P có li độ cực đại thì Q qua vị trí cân bằng theo chiều dương.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(\lambda = \frac{v}{f} = \frac{{1,5}}{{20}} = 0,075{\rm{\;m}} = 7,5{\rm{\;cm}}\)

\(PQ = 16,125{\rm{\;cm}} = 2\lambda + 0,15\lambda = Q'Q + PQ'\)

Một sóng cơ có tần số 20 Hz truyền trên mặt nước với tốc độ 1,5 m/s. Trên phương (ảnh 1)

Kết hợp với sử dụng đồ thị Hình 9.3G ta thấy thời gian ngắn nhất để Q' đi từ vị trí hiện tại đến vị trí thấp nhất là \(0,15{\rm{\;T}} = \frac{{0,15}}{{20}} = \frac{3}{{400}}{\rm{\;s}}\).

Lời giải

Đối với trường hợp sóng ngang, khoảng cách giữa hai điểm P, Q khi dao động được mô tả như Hình 9.4G.

P và Q là hai điểm trên mặt nước cách nhau một khoảng 20 cm. Tại một điểm (ảnh 1)

Gọi O1, O2 lần lượt là vị trí cân bằng của P và Q; u1, u2 lần lượt là li độ dao động của các phần tử tại P và Q;\({\rm{\Delta }}u = {u_1} - {u_2}\).

Khoảng cách giữa P và Q trong quá trình dao động là:

\(l = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{({\rm{\Delta u}})}^2}} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{l_{{\rm{min}}}} = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{(0)}^2}} = {{\rm{O}}_1}{{\rm{O}}_2}}\\{{l_{{\rm{max}}}} = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{\left( {{\rm{\Delta }}{{\rm{u}}_{{\rm{max}}}}} \right)}^2}} }\end{array}} \right.\)

Vậy khoảng cách gần nhất giữa P và Q là: \({l_{{\rm{min}}}} = {O_1}{O_2} = 20{\rm{\;cm}}\).

Khoảng cách xa nhất giữa P và Q là: \({l_{{\rm{max}}}} = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{\left( {{\rm{\Delta }}{{\rm{u}}_{{\rm{max}}}}} \right)}^2}} \).

Giả sử sóng truyền qua P rồi mới đến Q thì dao động tại P sớm pha hơn Q là: \({\rm{\Delta }}\varphi = \frac{{2\pi \left( {PQ} \right)}}{\lambda } = \frac{{8\pi }}{3}\)

Chọn mốc thời gian để phương trình dao động của phần tử tại P là: \({u_1} = 5{\rm{cos}}\omega t\left( {{\rm{cm}}} \right)\)

thì phương trình dao động của phần tử tại Q là: \({u_2} = 5{\rm{cos}}\left( {\omega t - \frac{{8\pi }}{3}} \right)\left( {{\rm{cm}}} \right)\).

\({\rm{\Delta u}} = {{\rm{u}}_1} - {{\rm{u}}_2} = 5{\rm{cos}}\left( {\omega {\rm{t}} - \frac{{8\pi }}{3}} \right) - 5{\rm{cos}}\omega {\rm{t}} = 5\sqrt 3 {\rm{cos}}\left( {\omega {\rm{t}} - \frac{{5\pi }}{6}} \right)\left( {{\rm{cm}}} \right)\)

\( \Rightarrow {\rm{\Delta }}{{\rm{u}}_{{\rm{max}}}} = 5\sqrt 3 {\rm{\;cm}}\).

\({l_{{\rm{max}}}} = \sqrt {{{(20)}^2} + {{(5\sqrt 3 )}^2}} = 5\sqrt {19} {\rm{\;cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay