Câu hỏi:

11/07/2024 923

Trong Bảng 4, có bao nhiêu số liệu với giá trị không vượt quá giá trị đầu mút phải:

a) 163 của nhóm 1?                                   b) 166 của nhóm 2?

c) 169 của nhóm 3?                                   d) 172 của nhóm 4?

e) 175 của nhóm 5?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Có 6 giá trị không vượt quá giá trị đầu mút phải 163 của nhóm 1.

b) Có 6 + 12 = 18 giá trị không vượt quá giá trị đầu mút phải 166 của nhóm 2.

c) Có 18 + 10 = 28 giá trị không vượt quá giá trị đầu mút phải 169 của nhóm 3.

d) Có 28 + 5 = 33 giá trị không vượt quá giá trị đầu mút phải 172 của nhóm 4.

e) Có 33 + 3 = 36 giá trị không vượt quá giá trị đầu mút phải 175 của nhóm 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:

Nhóm

Giá trị đại diện

Tần số

Tần số tích lũy

[30; 40)

35

4

4

[40; 50)

45

10

14

[50; 60)

55

14

28

[60; 70)

65

6

34

[70; 80)

75

4

38

[80; 90)

85

2

40

 

 

n = 40

 

Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:

x¯=354+4510+5514+656+754+85240=55,5.

Số phần tử của mẫu là n = 40. Ta có n2=402=20.

Mà 14 < 20 < 28 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.

Xét nhóm 3 là nhóm [50; 60) có r = 50, d = 10, n3 = 14 và nhóm 2 là nhóm [40; 50) có cf2 = 14.

Áp dụng công thức, ta có trung vị của mẫu số liệu là:

Me=50+2014141054,29 (cm).

Do đó tứ phân vị thứ hai là Q2 = Me ≈ 54,29 (cm).

Ta có n4=404=10. Mà 4 < 10 < 14 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.

Xét nhóm 2 là nhóm [40; 50) có s = 40; h = 10; n2 = 10 và nhóm 1 là nhóm [30; 40) có cf1 = 4.

Áp dụng công thức, ta có tứ phân vị thứ nhất là:

Q1=40+1041010=46 (cm).

Ta có 3n4=3404=30. Mà 28 < 30 < 34 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.

Xét nhóm 4 là nhóm [60; 70) có t = 60; l = 10; n4 = 6 và nhóm 3 là nhóm [50; 60) có cf3 = 28.

Áp dụng công thức, ta có tứ phân vị thứ ba là:

Q3=60+302861063,33 (cm).