Câu hỏi:

11/07/2024 4,605

Xét mẫu số liệu trong Ví dụ 2 được cho dưới dạng bảng tần số ghép nhóm (Bảng 4).

Nhóm

Tần số

[160; 163)

[163; 166)

[166; 169)

[169; 172)

[172; 175)

6

12

10
5

3

 

n = 36

Bảng 4

a) Tìm trung điểm x1 của nửa khoảng (tính bằng trung bình cộng của hai đầu mút) ứng với nhóm 1. Ta gọi trung điểm x1giá trị đại diện của nhóm 1.

b) Bằng cách tương tự, hãy tìm giá trị đại diện của bốn nhóm còn lại. Từ đó, hãy hoàn thiện các số liệu trong Bảng 7.

Nhóm

Giá trị đại diện

Tần số

[160; 163)

[163; 166)

[166; 169)

[169; 172)

[172; 175)

x1 = ?

x2 = ?

x3 = ?

x4 = ?

x5 = ?

n1 = ?

n2 = ?

n3 = ?

n4 = ?

n5 = ?

 

 

n = ?

Bảng 7

c) Tính giá trị x¯ cho bởi công thức sau: x¯=n1x1+n2x2++n5x5n.

Giá trị x¯ gọi là số trung bình cộng của mẫu số liệu đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Trung điểm x1 (giá trị đại diện) của nửa khoảng ứng với nhóm 1 là:

x1=160+1632=161,5.

b) Giá trị đại diện của nửa khoảng ứng với nhóm 2 là:

x2=163+1662=164,5.

Giá trị đại diện của nửa khoảng ứng với nhóm 3 là:

x3=166+1692=167,5.

Giá trị đại diện của nửa khoảng ứng với nhóm 4 là:

x4=169+1722=170,5.

Giá trị đại diện của nửa khoảng ứng với nhóm 5 là:

x5=172+1752=173,5.

Ta hoàn thiện được Bảng 7 như sau:

Nhóm

Giá trị đại diện

Tần số

[160; 163)

[163; 166)

[166; 169)

[169; 172)

[172; 175)

x1 = 161,5

x2 = 164,5

x3 = 167,5

x4 = 170,5

x5 = 173,5

n1 = 6

n2 = 12

n3 = 10

n4 = 5

n5 = 3

 

 

n = 36

c) Số trung bình cộng của mẫu số liệu đã cho là:

x¯=6161,5+12164,5+10167,5+5170,5+3173,536=166,416.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:

Nhóm

Giá trị đại diện

Tần số

Tần số tích lũy

[30; 40)

35

4

4

[40; 50)

45

10

14

[50; 60)

55

14

28

[60; 70)

65

6

34

[70; 80)

75

4

38

[80; 90)

85

2

40

 

 

n = 40

 

Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:

x¯=354+4510+5514+656+754+85240=55,5.

Số phần tử của mẫu là n = 40. Ta có n2=402=20.

Mà 14 < 20 < 28 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.

Xét nhóm 3 là nhóm [50; 60) có r = 50, d = 10, n3 = 14 và nhóm 2 là nhóm [40; 50) có cf2 = 14.

Áp dụng công thức, ta có trung vị của mẫu số liệu là:

Me=50+2014141054,29 (cm).

Do đó tứ phân vị thứ hai là Q2 = Me ≈ 54,29 (cm).

Ta có n4=404=10. Mà 4 < 10 < 14 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.

Xét nhóm 2 là nhóm [40; 50) có s = 40; h = 10; n2 = 10 và nhóm 1 là nhóm [30; 40) có cf1 = 4.

Áp dụng công thức, ta có tứ phân vị thứ nhất là:

Q1=40+1041010=46 (cm).

Ta có 3n4=3404=30. Mà 28 < 30 < 34 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.

Xét nhóm 4 là nhóm [60; 70) có t = 60; l = 10; n4 = 6 và nhóm 3 là nhóm [50; 60) có cf3 = 28.

Áp dụng công thức, ta có tứ phân vị thứ ba là:

Q3=60+302861063,33 (cm).