Câu hỏi:
13/07/2024 54,407Một hộp đựng 20 tấm thẻ cùng loại được đánh số từ 1 đến 20. Rút ngẫu nhiên một tấm thẻ trong hộp. Gọi A là biến cố “Rút được tấm thẻ ghi số chẵn lớn hơn 9”; B là biến cố “Rút được tấm thẻ ghi số không nhỏ hơn 8 và không lớn hơn 15”.
Số phần tử của A ∪ B là:
A. 11. B. 10 . C. 11. D. 13.
Câu hỏi trong đề: Giải SGK Toán 11 KNTT Ôn tập chương 8 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có:
A = {10; 12; 14; 16; 18; 20}.
B = {8; 9; 10; 11; 12; 13; 14; 15}.
Vậy AB = {8; 9; 10; 11; 12; 13; 14; 15; 16; 18; 20}.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau:
A: “Ở lần gieo thứ nhất, số chấm xuất hiện trên con xúc xắc là 1”;
B: “Ở lần gieo thứ hai, số chấm xuất hiện trên con xúc xắc là 2”;
C: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 8”;
D: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 7”.
Chứng tỏ rằng các cặp biến cố A và C; B và C; C và D không độc lập.
Câu 2:
Tại một hội thảo quốc tế có 50 nhà khoa học, trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người trong hội thảo.
Xác suất để người được chọn không thành thạo cả hai thứ tiếng Anh hay Pháp là
A. . B. . C. . D. .
Câu 3:
Hai vận động viên bắn súng A và B mỗi người bắn một viên đạn vào tấm bia một cách độc lập. Xét các biến cố sau:
M: “Vận động viên A bắn trúng vòng 10”;
N: “Vận động viên B bắn trúng vòng 10”.
Hãy biểu diễn các biến cố sau theo biến cố M và N:
C: “Có ít nhất một vận động viên bắn trúng vòng 10”;
D: “Cả hai vận động viên bắn trúng vòng 10”;
E: “Cả hai vận động viên đều không bắn trúng vòng 10”;
F: “Vận động viên A bắn trúng và vận động viên B không bắn trúng vòng 10”;
G: “Chỉ có duy nhất một vận động viên bắn trúng vòng 10”.
Câu 4:
Một đoàn khách du lịch gồm 31 người, trong đó có 7 người đến từ Hà Nội, 5 người đến từ Hải Phòng. Chọn ngẫu nhiên một người trong đoàn. Tính xác suất để người đó đến từ Hà Nội hoặc đến từ Hải Phòng.
Câu 5:
Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là 0,92 và 0,98.
Dùng sơ đồ hình cây, tính xác suất để:
a) Cả hai chuyến bay khởi hành đúng giờ;
Câu 6:
Tại một hội thảo quốc tế có 50 nhà khoa học, trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người trong hội thảo.
Xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp là:
A. . B. C. . D. .
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận