Câu hỏi:

13/07/2024 12,423

Khảo sát một trường trung học phổ thông, người ta thấy có 20% học sinh thuận tay trái và 35% học sinh bị cận thị. Giả sử đặc điểm thuận tay nào không ảnh hưởng đến việc học sinh có bị cận thị hay không. Gặp ngẫu nhiên một học sinh của trường. Tính xác suất của biến cố học sinh đó bị cận thị hoặc thuận tay trái.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi biến cố A: “Học sinh đó thuận tay trái”.

Biến cố B: “Học sinh đó bị cận thị”.

Biến cố AB: “Học sinh đó bị cận thị và thuận tay trái”.

Biến cố A  B: “Học sinh đó bị cận thị hoặc thuận tay trái”.

Theo đề ta có: P(A) = 20%; P(B) = 35%.

Vì A, B độc lập nên P(AB) = P(A)P(B) = 20%×35% = 7%.

Ta có P(A B) = P(A) + P(B) – P(AB) = 20% + 35% − 7% = 48%.

Vậy xác suất để học sinh đó bị cận thị hoặc thuận tay trái là 48%.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi biến cố A: "Lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5".

Rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá có 52 cách, suy ra n(W) = 52.

Lá bài có màu đỏ hoặc lá có số chia hết cho 5 có 30 lá, suy ra n(A) = 30.

Do đó, P(A)=nAnΩ=3052=1526.

Vậy xác suất để lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5 là 1526.

Lời giải

Vì A, B độc lập với nhau nên P(AB) = P(A)P(B) = 0,9×0,6 = 0,54.

Ta có P(A B) = P(A) + P(B) – P(AB) = 0,9 + 0,6 – 0,54 = 0,96.

Vậy P(A B) = 0,96.