Câu hỏi:

13/07/2024 13,621

Lan gieo một đồng xu không cân đối 3 lần độc lập với nhau. Biết xác suất xuất hiện mặt sấp trong mỗi lần gieo đều bằng 0,4. Sử dụng sơ đồ hình cây, tính xác suất của biến cố "Có đúng 1 lần gieo được mặt sấp trong 3 lần gieo".

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lan gieo một đồng xu không cân đối 3 lần độc lập với nhau. Biết xác suất xuất hiện mặt (ảnh 1)

Theo sơ đồ hình cây trên, xác suất để có đúng 1 lần gieo được mặt sấp trong 3 lần gieo là:

0,144 + 0,144 + 0,144 = 0,432.

Vậy xác suất để có đúng 1 lần gieo được mặt sấp trong 3 lần gieo là 0,432.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi biến cố A: "Lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5".

Rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá có 52 cách, suy ra n(W) = 52.

Lá bài có màu đỏ hoặc lá có số chia hết cho 5 có 30 lá, suy ra n(A) = 30.

Do đó, P(A)=nAnΩ=3052=1526.

Vậy xác suất để lá bài được chọn có màu đỏ hoặc là lá có số chia hết cho 5 là 1526.

Lời giải

Vì A, B độc lập với nhau nên P(AB) = P(A)P(B) = 0,9×0,6 = 0,54.

Ta có P(A B) = P(A) + P(B) – P(AB) = 0,9 + 0,6 – 0,54 = 0,96.

Vậy P(A B) = 0,96.