Câu hỏi:
15/11/2023 638Câu hỏi trong đề: Giải SGK Toán 11 CD Bài tập cuối chương 8 có đáp án !!
Quảng cáo
Trả lời:
e) Theo câu d ta có CM ⊥ (ABB’A’).
Mà A’M ⊂ (ABB’A’) nên CM ⊥ A’M.
Do CC’ ⊥ (ABC) và CM ⊂ (ABC) nên CC’ ⊥ CM.
Ta thấy: CM ⊥ A’M, CM ⊥ CC’.
Suy ra đoạn thẳng CM là đoạn vuông góc chung của hai đường thẳng CC’ và A’M.
Khi đó
Vậy khoảng cách giữa hai đường thẳng CC’ và A’M bằng
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Mô tả phần thân của đền Kukulcan trong bài toán bằng khối chóp cụt tứ giác đều ABCD.A’B’C’D’, với O và O’ lần lượt là tâm của hai đáy ABCD và A’B’C’D’.
Như vậy ta có:
⦁ ABCD là hình vuông cạnh 55,3 có diện tích SABCD = 55,32 = 3 058,09 (m2);
⦁ A’B’C’D’ là hình vuông;
⦁ Các cạnh bên A’A, B’B, C’C, D’D tạo với mặt đáy bằng 47°;
⦁ OO’ vuông góc với (ABCD) và (A’B’C’D’) và OO’ = 24 (m).
Do ABCD là hình vuông nên do đó tam giác ABC vuông tại B.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = 55,32 + 55,32 = 2 . 55,32.
Suy ra (m).
Do đó (m) (do O là tâm hình vuông ABCD).
Dễ thấy: (ABCD) ∩ (A’C’CA) = AC;
(A’B’C’D’) ∩ (A’C’CA) = A’C’.
Mà (ABCD) // (A’B’C’D’).
Suy ra AC // A’C’ hay A’C’CA là hình thang.
Xét hình thang A’C’CA, kẻ C’H ⊥ AC (H ∈ AC).
Vì OO’ ⊥ (ABCD) và AC ⊂ (ABCD) nên OO’ ⊥ AC.
Do đó C’H // OO’ (cùng vuông góc với AC).
Mà O’C’ // OH (do A’C’ // AC)
Suy ra O’C’HO là hình bình hành.
Do đó: C’H = OO’ = 24 (m) và OH = O’C’.
Vì OO’ ⊥ (ABCD) và OO’ // C’H nên C’H ⊥ (ABCD).
Suy ra CH là hình chiếu của CC’ trên (ABCD).
Khi đó, góc giữa cạnh bên CC’ và mặt phẳng đáy bằng
Xét tam giác C’HC vuông tại H (do C’H ⊥ AC) có
Suy ra
Suy ra O’C’ = OH = OC – HC ≈ 39,1 – 22,38 = 16,72.
Ta có A’C’ = 2O’C ≈ 2.16,72 = 33,44 (do O’ là tâm hình vuông A’B’C’D’).
Vì A’B’C’D’ là hình vuông nên và A’B’ = B’C’.
Suy ra tam giác A’B’C’ vuông cân tại B’.
Áp dụng định lí Pythagore trong tam giác A’B’C’ vuông cân tại B’ có:
A’B’2 + B’C’2 = A’C’2 hay 2A’B’2 = A’C’2
Suy ra
Diện tích hình vuông A’B’C’D’ cạnh 23,65 là: S A’B’C’D’ ≈ 23,652 = 559,3225 (m2).
Như vậy, thể tích khối chóp cụt tứ giác đều ABCD.A’B’C’D’ với chiều cao OO’ = 24 và diện tích hai đáy SABCD = 3 058,09; SA’B’C’D’ = 559,3225 là
Vậy thể tích phần thân ngôi đền đã cho gần bằng 39 402,06 m3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.