Câu hỏi:

21/03/2024 628 Lưu

Ông A vay dài hạn ngân hàng 300 triệu đồng, với lãi suất 12% năm. Ông muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một năm kể từ ngày vay, ông bắt đầu hoàn nợ, hai lần hoàn nợ liên tiếp cách nhau đúng một năm, số tiền hoàn ở mỗi lần là như nhau và trả hết nợ sau đúng 4 năm kể từ ngày vay. Hỏi theo cách đó, số tiền \(m\) mà ông A sẽ phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không thay đổi trong thời gian ông A hoàn nợ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Số tiền nợ sau năm thứ nhất:

\[{T_1} = 300\left( {1 + 12\% } \right) - m = 300p - m\], với \[p = 1 + 12\% = 1,12\].

Số tiền nợ sau năm thứ hai:

\[{T_2} = \left( {300p - m} \right)p - m = 300{p^2} - mp - m\].

Số tiền nợ sau năm thứ ba:

\[{T_3} = \left( {300{p^2} - mp - m} \right)p - m = 300{p^3} - m{p^2} - mp - m\]

Trả hết nợ sau năm thứ tư: \[\left( {300{p^3} - m{p^2} - mp - m} \right)p - m = 0\]

\[ \Leftrightarrow 300{p^4} - m{p^3} - m{p^2} - mp - m = 0 \Leftrightarrow 300{p^4} - m\left( {{p^3} + {p^2} + p + 1} \right) = 0\]

\[ \Leftrightarrow 300{p^4} - m \cdot \frac{{\left( {{p^4} - 1} \right)}}{{p - 1}} = 0 \Leftrightarrow 300 \cdot {\left( {1,12} \right)^4} = m \cdot \frac{{\left[ {{{\left( {1,12} \right)}^4} - 1} \right]}}{{0,12}}\]

\[ \Leftrightarrow m = \frac{{300 \cdot {{\left( {1,12} \right)}^4} \cdot \left( {0,12} \right)}}{{{{\left( {1,12} \right)}^4} - 1}} \Leftrightarrow m = \frac{{36 \cdot {{\left( {1,12} \right)}^4}}}{{{{\left( {1,12} \right)}^4} - 1}}\].

Vậy \[m = \frac{{36 \cdot {{\left( {1,12} \right)}^4}}}{{{{\left( {1,12} \right)}^4} - 1}} \approx 98,77\] triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Cỡ mẫu: \(n = 2 + 4 + 7 + 4 + 3 = 20\).

Gọi \({x_1},\,{x_2},\,...,{x_{20}}\) là thời gian hoàn thành bài tập của 20 học sinh được điều tra và giả sử dãy này đã được sắp xếp theo thứ tự không giảm.

Tứ phân vị thứ ba \({Q_3}\)\(\frac{{{x_{15}} + {x_{16}}}}{2}\). Do \({x_{15}},\,\,{x_{16}}\) đều thuộc nhóm \(\left[ {12;16} \right)\) nên nhóm này chứa \({Q_3}\).

Do đó: \(p = 4\), \({a_4} = 12\), \({m_4} = 4\), \({m_1} + {m_2} + {m_3} = 2 + 4 + 7 = 13\), \({a_5} - {a_4} = 4\). Ta có:

\({Q_3} = 12 + \frac{{\frac{{3.20}}{4} - 13}}{4}.4 = 14\).

Vậy ngưỡng thời gian cần tìm là 14 phút.

b) \[Q = {\log _{{a^2}}}\left( {{a^{10}}{b^2}} \right) + {\log _{\sqrt a }}\left( {\frac{a}{{\sqrt b }}} \right) + {\log _{\sqrt[3]{b}}}{b^{ - 2}}\]

          \[ = \frac{1}{2}\left[ {{{\log }_a}{a^{10}} + {{\log }_a}{b^2}} \right] + 2\left[ {{{\log }_a}a - {{\log }_a}\sqrt b } \right] + 3 \cdot \left( { - 2} \right){\log _b}b\] \[ = \frac{1}{2}\left[ {10 + 2{{\log }_a}b} \right] + 2\left[ {1 - \frac{1}{2}{{\log }_a}b} \right] - 6 = 1.\]

Câu 2

Lời giải

Đáp án B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP