Câu hỏi:
21/03/2024 146
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật cạnh \(AB = a,AD = a\sqrt 2 \), \[SA \bot \left( {ABCD} \right)\], góc giữa \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(60^\circ \). Gọi \(M\) là trung điểm của cạnh \(SB\).
a) Chứng minh \(\left( {SAB} \right) \bot \left( {SAD} \right)\).
b) Tính khoảng cách từ điểm \(M\) tới mặt phẳng \(\left( {ABCD} \right)\).
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật cạnh \(AB = a,AD = a\sqrt 2 \), \[SA \bot \left( {ABCD} \right)\], góc giữa \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(60^\circ \). Gọi \(M\) là trung điểm của cạnh \(SB\).
a) Chứng minh \(\left( {SAB} \right) \bot \left( {SAD} \right)\).
b) Tính khoảng cách từ điểm \(M\) tới mặt phẳng \(\left( {ABCD} \right)\).
Câu hỏi trong đề: Đề kiểm tra Cuối kì 2 Toán 11 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:

a) Vì \(ABCD\) là hình chữ nhật nên \(AB \bot AD\) (1).
Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\) (2).
Từ (1) và (2), suy ra \(AB \bot \left( {SAD} \right)\) mà \(AB \subset \left( {SAB} \right)\). Do đó \(\left( {SAB} \right) \bot \left( {SAD} \right)\).
b) Vì \(M\) là trung điểm của \(SB\) và \(SM \cap \left( {ABCD} \right) = \left\{ B \right\}\).
Do đó \(\frac{{d\left( {M,\left( {ABCD} \right)} \right)}}{{d\left( {S,\left( {ABCD} \right)} \right)}} = \frac{{MB}}{{SB}} = \frac{1}{2}\)\( \Rightarrow d\left( {M,\left( {ABCD} \right)} \right) = \frac{1}{2}d\left( {S,\left( {ABCD} \right)} \right)\).
Vì \(SA \bot \left( {ABCD} \right) \Rightarrow d\left( {S,\left( {ABCD} \right)} \right) = SA\).
Vì \[SA \bot \left( {ABCD} \right)\] nên \(AC\) là hình chiếu của \(SC\) trên mặt phẳng \(\left( {ABCD} \right)\).
Do đó \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,CA} \right) = \widehat {SCA}\).
Có \(BD = AC = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + 2{a^2}} = a\sqrt 3 \).
Xét \(\Delta SAC\) vuông tại \(A\) có \(SA = AC.\tan \widehat {SCA} = a\sqrt 3 .\tan 60^\circ = 3a\).
Do đó \(d\left( {M,\left( {ABCD} \right)} \right) = \frac{{3a}}{2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.