Câu hỏi:

05/04/2024 164

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$$B$, $SA \bot \left( {ABCD} \right)$, $AD = 2a,\,AB = BC = a$. Chứng minh rằng $DC \bot \left( {SAC} \right)$.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông  (ảnh 1)

Gọi $I$ là trung điểm của $AD$. Suy ra $AI = ID = \frac{1}{2}AD = a$.

Ta có $AI = BC\,\,\left( { = a} \right)$$AI\,{\text{//}}\,BC\,\,\left( {{\text{do}}\,AD\,{\text{//}}\,BC} \right)$ nên tứ giác $ABCI$ là hình bình hành. Lại có $AI = AB = a$ nên $ABCI$ là hình thoi, mà $\widehat {ABC} = 90^\circ $, do đó $ABCI$ là hình vuông. Khi đó, $\widehat {AIC} = 90^\circ $, suy ra $\widehat {CID} = 90^\circ $.

Tam giác $ICD$$ID = IC = a$$\widehat {CID} = 90^\circ $ nên tam giác $ICD$ vuông cân tại $I$.

Suy ra $\widehat {ICD} = 45^\circ $.

Lại có $\widehat {ACI} = \frac{1}{2}\widehat {BCI} = \frac{1}{2} \cdot 90^\circ = 45^\circ $ (vì $ABCI$ là hình vuông).

Nên ta có $\widehat {ACD} = \widehat {ACI} + \widehat {ICD} = 90^\circ $. Suy ra $AC \bot CD$.

\[CD \bot SA\,\,\left( {{\text{do}}\,\,SA \bot \left( {ABCD} \right)} \right)\], từ đó suy ra $DC \bot \left( {SAC} \right)$.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho $a > 0,m,n \in \mathbb{R}$. Khẳng định nào sau đây đúng?

Xem đáp án » 05/04/2024 7,708

Câu 2:

Nghiệm của phương trình ${3^x} = 7$

Xem đáp án » 05/04/2024 1,075

Câu 3:

Chọn khẳng định đúng?

Xem đáp án » 05/04/2024 621

Câu 4:

Đạo hàm của hàm số $y = \cos x$ tại $x = \frac{\pi }{3}$

Xem đáp án » 05/04/2024 605

Câu 5:

Nếu $m$ là số nguyên dương, biểu thức nào sau đây không bằng với ${\left( {{2^4}} \right)^m}$?

Xem đáp án » 05/04/2024 580

Câu 6:

Tập nghiệm của bất phương trình ${\log _{\frac{1}{2}}}x \leqslant - 3$

Xem đáp án » 05/04/2024 562

Câu 7:

Với $a,b$ là các số thực dương tùy ý và $a \ne 1$, ${\log _{{a^5}}}b$ bằng

Xem đáp án » 05/04/2024 463

Bình luận


Bình luận
Vietjack official store