Câu hỏi:

05/04/2024 277

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$$B$, $SA \bot \left( {ABCD} \right)$, $AD = 2a,\,AB = BC = a$. Chứng minh rằng $DC \bot \left( {SAC} \right)$.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông  (ảnh 1)

Gọi $I$ là trung điểm của $AD$. Suy ra $AI = ID = \frac{1}{2}AD = a$.

Ta có $AI = BC\,\,\left( { = a} \right)$$AI\,{\text{//}}\,BC\,\,\left( {{\text{do}}\,AD\,{\text{//}}\,BC} \right)$ nên tứ giác $ABCI$ là hình bình hành. Lại có $AI = AB = a$ nên $ABCI$ là hình thoi, mà $\widehat {ABC} = 90^\circ $, do đó $ABCI$ là hình vuông. Khi đó, $\widehat {AIC} = 90^\circ $, suy ra $\widehat {CID} = 90^\circ $.

Tam giác $ICD$$ID = IC = a$$\widehat {CID} = 90^\circ $ nên tam giác $ICD$ vuông cân tại $I$.

Suy ra $\widehat {ICD} = 45^\circ $.

Lại có $\widehat {ACI} = \frac{1}{2}\widehat {BCI} = \frac{1}{2} \cdot 90^\circ = 45^\circ $ (vì $ABCI$ là hình vuông).

Nên ta có $\widehat {ACD} = \widehat {ACI} + \widehat {ICD} = 90^\circ $. Suy ra $AC \bot CD$.

\[CD \bot SA\,\,\left( {{\text{do}}\,\,SA \bot \left( {ABCD} \right)} \right)\], từ đó suy ra $DC \bot \left( {SAC} \right)$.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho $a > 0,m,n \in \mathbb{R}$. Khẳng định nào sau đây đúng?

Xem đáp án » 05/04/2024 21,511

Câu 2:

Cho $a$ là số thực dương khác $1$. Khi đó $\sqrt[8]{{{a^3}}}$ bằng

Xem đáp án » 05/04/2024 2,290

Câu 3:

A. $y = {2^x}$.

Xem đáp án » 05/04/2024 2,234

Câu 4:

Nghiệm của phương trình ${3^x} = 7$

Xem đáp án » 05/04/2024 2,198

Câu 5:

Tập nghiệm của bất phương trình ${\log _{\frac{1}{2}}}x \leqslant - 3$

Xem đáp án » 05/04/2024 1,811

Câu 6:

Với $a,b$ là các số thực dương tùy ý và $a \ne 1$, ${\log _{{a^5}}}b$ bằng

Xem đáp án » 05/04/2024 1,714

Câu 7:

Nếu $m$ là số nguyên dương, biểu thức nào sau đây không bằng với ${\left( {{2^4}} \right)^m}$?

Xem đáp án » 05/04/2024 1,670
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay