Câu hỏi:

13/07/2024 199

Cho hình chóp $S.ABCD$ có đáy là hình thoi cạnh $a\sqrt 2 $, $\widehat {BAD} = 60^\circ $, $SA = a\sqrt 3 $$SA$ vuông góc với mặt phẳng đáy. Gọi $M$ là trung điểm của $SC$.

a) Chứng minh $BD \bot \left( {SAC} \right)$.

b) Tính khoảng cách giữa hai đường thẳng $MD$$AB$.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a (ảnh 1)

a) Do $SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD$.

$ABCD$ là hình thoi nên $AC \bot BD$.

Do đó $\left\{ \begin{gathered}

BD \bot SA \hfill \\

BD \bot AC \hfill \\

\end{gathered} \right. \Rightarrow BD \bot \left( {SAC} \right)$.

b) Ta có $AB//DC \Rightarrow AB//\left( {SCD} \right) \Rightarrow d\left( {AB,\,MD} \right) = d\left( {AB,\left( {SCD} \right)} \right) = d\left( {A,\,\left( {SCD} \right)} \right).$

Trong mặt phẳng $\left( {ABCD} \right)$ hạ $AK \bot DC$ tại $K.$

Trong $\left( {SKA} \right)$ hạ $AH \bot SK$ tại $H\,\,\left( 1 \right)$.

Khi đó ta có \[\left\{ \begin{gathered}

DC \bot SA \hfill \\

DC \bot AK \hfill \\

\end{gathered} \right. \Rightarrow DC \bot \left( {SAK} \right) \Rightarrow DC \bot AH\,\left( 2 \right)\,\]

Từ $\left( 1 \right),\,\left( 2 \right)$ suy ra $AH \bot \left( {SDC} \right) \Rightarrow d\left( {A,\,\left( {SDC} \right)} \right) = AH$.

Ta có: ${S_{ABCD}} = AK.DC = AD.AB\sin \widehat {BAD} \Rightarrow AK = a\sqrt 2 .\frac{{\sqrt 3 }}{2} = \frac{{a\sqrt 6 }}{2}$.

Xét $\Delta SAK$vuông tại $A,$$\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{K^2}}} = \frac{1}{{3{a^2}}} + \frac{4}{{6{a^2}}} = \frac{1}{{{a^2}}}$

$\,\, \Rightarrow AH = a \Rightarrow d\left( {AB,\,MD} \right) = a$.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Từ \[101\] đến \[200\]\[100\] số gồm \[33\] số chia hết cho \[3\], \[33\] số chia cho \[3\]\[1\], và \[34\] số chia cho \[3\]\[2\].

Ta có $n\left( \Omega \right) = C_{100}^3$.

\[A\] là biến cố: “Tổng các số ghi trên \[3\] tấm thẻ đó là một số chia hết cho \[3\]”.

TH1: Cả 3 số lấy được đều chia hết cho 3.

TH2: Cả 3 số lấy được đều chia 3 dư 1.

TH3: Cả 3 số lấy được đều chia 3 dư 2.

TH4: 3 số lấy được có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Khi đó $n\left( A \right) = 2C_{33}^3 + C_{34}^3 + C_{34}^1C_{33}^1C_{33}^1$.

Suy ra $P\left( A \right) = \frac{{817}}{{2450}}.$

b) Ta có sơ đồ

a) Trong một hộp có 100 tấm thẻ được đánh số từ (ảnh 1)

Xác suất anh Lâm không bị bệnh là: $0,2.0,9 = 0,18$.

Do đó xác suất anh Lâm bị bệnh là: $1 - 0,18 = 0,82$.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đạo hàm cấp hai của hàm số $y = \cos x$

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Đạo hàm cấp hai của hàm số $y = \ln x + {x^2}$

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tập nghiệm của bất phương trình ${\left( {\frac{1}{8}} \right)^{x - 1}} \geqslant 128$

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay