a) Tính đạo hàm của hàm số $y = \left( {2x - 1} \right)\sqrt {{x^2} + x} $.
b) Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\mathbb{R}$. Xét các hàm số $g\left( x \right) = f\left( x \right) - f\left( {2x} \right)$ và $h\left( x \right) = f\left( x \right) - f\left( {4x} \right)$. Biết rằng $g'\left( 1 \right) = 18$ và $g'\left( 2 \right) = 1000$. Tính hệ số góc tiếp tuyến của đồ thị hàm số $h\left( x \right)$ tại điểm có hoành độ $x = 1$.
a) Tính đạo hàm của hàm số $y = \left( {2x - 1} \right)\sqrt {{x^2} + x} $.
b) Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\mathbb{R}$. Xét các hàm số $g\left( x \right) = f\left( x \right) - f\left( {2x} \right)$ và $h\left( x \right) = f\left( x \right) - f\left( {4x} \right)$. Biết rằng $g'\left( 1 \right) = 18$ và $g'\left( 2 \right) = 1000$. Tính hệ số góc tiếp tuyến của đồ thị hàm số $h\left( x \right)$ tại điểm có hoành độ $x = 1$.
Câu hỏi trong đề: Bộ 2 Đề kiểm tra Cuối kì 2 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
a) Ta có: $y' = 2\sqrt {{x^2} + x} + \frac{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}{{2\sqrt {{x^2} + x} }}$\[ = \frac{{4{x^2} + 4x + 4{x^2} - 1}}{{2\sqrt {{x^2} + x} }} = \frac{{8{x^2} + 4x - 1}}{{2\sqrt {{x^2} + x} }}.\]
Vậy \[y' = \frac{{8{x^2} + 4x - 1}}{{2\sqrt {{x^2} + x} }}.\]
b) Ta có $g'\left( x \right) = f'\left( x \right) - 2f'\left( {2x} \right)$, $h'\left( x \right) = f'\left( x \right) - 4f'\left( {4x} \right)$.
Do $\left\{ \begin{gathered}
g'\left( 1 \right) = 18 \hfill \\
g'\left( 2 \right) = 1000 \hfill \\
\end{gathered} \right. \Rightarrow \left\{ \begin{gathered}
f'\left( 1 \right) - 2f'\left( 2 \right) = 18 \hfill \\
f'\left( 2 \right) - 2f'\left( 4 \right) = 1000 \hfill \\
\end{gathered} \right.$$ \Rightarrow \left\{ \begin{gathered}
f'\left( 1 \right) - 2f'\left( 2 \right) = 18 \hfill \\
2f'\left( 2 \right) - 4f'\left( 4 \right) = 2000 \hfill \\
\end{gathered} \right.$
$ \Rightarrow f'\left( 1 \right) - 4f'\left( 4 \right) = 2018$.
Vậy $h'\left( 1 \right) = 2018$ hay hệ số góc tiếp tuyến của đồ thị hàm số $h\left( x \right)$ tại điểm có hoành độ $x = 1$ bằng 2018.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Từ \[101\] đến \[200\] có \[100\] số gồm \[33\] số chia hết cho \[3\], \[33\] số chia cho \[3\] dư \[1\], và \[34\] số chia cho \[3\] dư \[2\].
Ta có $n\left( \Omega \right) = C_{100}^3$.
\[A\] là biến cố: “Tổng các số ghi trên \[3\] tấm thẻ đó là một số chia hết cho \[3\]”.
TH1: Cả 3 số lấy được đều chia hết cho 3.
TH2: Cả 3 số lấy được đều chia 3 dư 1.
TH3: Cả 3 số lấy được đều chia 3 dư 2.
TH4: 3 số lấy được có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.
Khi đó $n\left( A \right) = 2C_{33}^3 + C_{34}^3 + C_{34}^1C_{33}^1C_{33}^1$.
Suy ra $P\left( A \right) = \frac{{817}}{{2450}}.$
b) Ta có sơ đồ

Xác suất anh Lâm không bị bệnh là: $0,2.0,9 = 0,18$.
Do đó xác suất anh Lâm bị bệnh là: $1 - 0,18 = 0,82$.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.