Câu hỏi:

11/07/2024 324

a) Tính đạo hàm của hàm số $y = \left( {2x - 1} \right)\sqrt {{x^2} + x} $.

b) Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\mathbb{R}$. Xét các hàm số $g\left( x \right) = f\left( x \right) - f\left( {2x} \right)$$h\left( x \right) = f\left( x \right) - f\left( {4x} \right)$. Biết rằng $g'\left( 1 \right) = 18$$g'\left( 2 \right) = 1000$. Tính hệ số góc tiếp tuyến của đồ thị hàm số $h\left( x \right)$ tại điểm có hoành độ $x = 1$.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: $y' = 2\sqrt {{x^2} + x} + \frac{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}{{2\sqrt {{x^2} + x} }}$\[ = \frac{{4{x^2} + 4x + 4{x^2} - 1}}{{2\sqrt {{x^2} + x} }} = \frac{{8{x^2} + 4x - 1}}{{2\sqrt {{x^2} + x} }}.\]

Vậy \[y' = \frac{{8{x^2} + 4x - 1}}{{2\sqrt {{x^2} + x} }}.\]

b) Ta có $g'\left( x \right) = f'\left( x \right) - 2f'\left( {2x} \right)$, $h'\left( x \right) = f'\left( x \right) - 4f'\left( {4x} \right)$.

Do $\left\{ \begin{gathered}

g'\left( 1 \right) = 18 \hfill \\

g'\left( 2 \right) = 1000 \hfill \\

\end{gathered} \right. \Rightarrow \left\{ \begin{gathered}

f'\left( 1 \right) - 2f'\left( 2 \right) = 18 \hfill \\

f'\left( 2 \right) - 2f'\left( 4 \right) = 1000 \hfill \\

\end{gathered} \right.$$ \Rightarrow \left\{ \begin{gathered}

f'\left( 1 \right) - 2f'\left( 2 \right) = 18 \hfill \\

2f'\left( 2 \right) - 4f'\left( 4 \right) = 2000 \hfill \\

\end{gathered} \right.$

$ \Rightarrow f'\left( 1 \right) - 4f'\left( 4 \right) = 2018$.

Vậy $h'\left( 1 \right) = 2018$ hay hệ số góc tiếp tuyến của đồ thị hàm số $h\left( x \right)$ tại điểm có hoành độ $x = 1$ bằng 2018.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Từ \[101\] đến \[200\]\[100\] số gồm \[33\] số chia hết cho \[3\], \[33\] số chia cho \[3\]\[1\], và \[34\] số chia cho \[3\]\[2\].

Ta có $n\left( \Omega \right) = C_{100}^3$.

\[A\] là biến cố: “Tổng các số ghi trên \[3\] tấm thẻ đó là một số chia hết cho \[3\]”.

TH1: Cả 3 số lấy được đều chia hết cho 3.

TH2: Cả 3 số lấy được đều chia 3 dư 1.

TH3: Cả 3 số lấy được đều chia 3 dư 2.

TH4: 3 số lấy được có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Khi đó $n\left( A \right) = 2C_{33}^3 + C_{34}^3 + C_{34}^1C_{33}^1C_{33}^1$.

Suy ra $P\left( A \right) = \frac{{817}}{{2450}}.$

b) Ta có sơ đồ

a) Trong một hộp có 100 tấm thẻ được đánh số từ (ảnh 1)

Xác suất anh Lâm không bị bệnh là: $0,2.0,9 = 0,18$.

Do đó xác suất anh Lâm bị bệnh là: $1 - 0,18 = 0,82$.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đạo hàm cấp hai của hàm số $y = \cos x$

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Đạo hàm cấp hai của hàm số $y = \ln x + {x^2}$

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tập nghiệm của bất phương trình ${\left( {\frac{1}{8}} \right)^{x - 1}} \geqslant 128$

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay