Câu hỏi:
11/07/2024 303a) Tính đạo hàm của hàm số $y = \left( {2x - 1} \right)\sqrt {{x^2} + x} $.
b) Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\mathbb{R}$. Xét các hàm số $g\left( x \right) = f\left( x \right) - f\left( {2x} \right)$ và $h\left( x \right) = f\left( x \right) - f\left( {4x} \right)$. Biết rằng $g'\left( 1 \right) = 18$ và $g'\left( 2 \right) = 1000$. Tính hệ số góc tiếp tuyến của đồ thị hàm số $h\left( x \right)$ tại điểm có hoành độ $x = 1$.
Quảng cáo
Trả lời:
a) Ta có: $y' = 2\sqrt {{x^2} + x} + \frac{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}{{2\sqrt {{x^2} + x} }}$\[ = \frac{{4{x^2} + 4x + 4{x^2} - 1}}{{2\sqrt {{x^2} + x} }} = \frac{{8{x^2} + 4x - 1}}{{2\sqrt {{x^2} + x} }}.\]
Vậy \[y' = \frac{{8{x^2} + 4x - 1}}{{2\sqrt {{x^2} + x} }}.\]
b) Ta có $g'\left( x \right) = f'\left( x \right) - 2f'\left( {2x} \right)$, $h'\left( x \right) = f'\left( x \right) - 4f'\left( {4x} \right)$.
Do $\left\{ \begin{gathered}
g'\left( 1 \right) = 18 \hfill \\
g'\left( 2 \right) = 1000 \hfill \\
\end{gathered} \right. \Rightarrow \left\{ \begin{gathered}
f'\left( 1 \right) - 2f'\left( 2 \right) = 18 \hfill \\
f'\left( 2 \right) - 2f'\left( 4 \right) = 1000 \hfill \\
\end{gathered} \right.$$ \Rightarrow \left\{ \begin{gathered}
f'\left( 1 \right) - 2f'\left( 2 \right) = 18 \hfill \\
2f'\left( 2 \right) - 4f'\left( 4 \right) = 2000 \hfill \\
\end{gathered} \right.$
$ \Rightarrow f'\left( 1 \right) - 4f'\left( 4 \right) = 2018$.
Vậy $h'\left( 1 \right) = 2018$ hay hệ số góc tiếp tuyến của đồ thị hàm số $h\left( x \right)$ tại điểm có hoành độ $x = 1$ bằng 2018.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 211
Đã bán 104
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hộp đựng $10$ tấm thẻ cùng loại được đánh số từ $1$ đến $10$. Rút ngẫu nhiên một tấm thẻ trong hộp. Gọi $A$ là biến cố “Rút được tấm thẻ ghi số chẵn”, $B$ là biến cố “Rút được tấm thẻ ghi số lẻ”. Số phần tử biến cố $A$ hợp $B$ là
Câu 2:
a) Trong một hộp có \[100\] tấm thẻ được đánh số từ \[101\] đến \[200\] (mỗi tấm thẻ được đánh một số khác nhau). Lấy ngẫu nhiên đồng thời \[3\] tấm thẻ trong hộp. Tính xác suất để tổng các số ghi trên \[3\] tấm thẻ đó là một số chia hết cho \[3\].
b) Một bệnh truyền nhiễm có xác suất truyền bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Anh Lâm tiếp xúc với 1 người bệnh hai lần, trong đó có một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất anh Lâm bị lây bệnh từ người bệnh mà anh tiếp xúc đó.
Câu 3:
Một vật chuyển động có phương trình $s\left( t \right) = \frac{1}{3}{t^3} - 3{t^2} + 36t$ , trong đó $t > 0$ và tính bằng giây $\left( {\text{s}} \right)$ và $s\left( t \right)$ tính bằng mét $\left( {\text{m}} \right)$. Tính vận tốc tại thời điểm gia tốc triệt tiêu.
Câu 5:
Cho hàm số $y = f\left( x \right)$ có $\mathop {\lim }\limits_{x \to - 1} \frac{{f(x) - f( - 1)}}{{x + 1}} = 5$. Khi đó $f'\left( { - 1} \right)$bằng
Câu 7:
Tập nghiệm của bất phương trình ${\left( {\frac{1}{8}} \right)^{x - 1}} \geqslant 128$ là
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận