Câu hỏi:

19/08/2025 242 Lưu

Tính các giới hạn sau:

a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right).\]  b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có: \[1 + n - {n^2} = {n^2}\left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right).\]

Mặt khác: \(\mathop {\lim }\limits_{n \to + \infty } {n^2} = + \infty ;\)

                 \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^2}}} + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} - \mathop {\lim }\limits_{n \to + \infty } 1 = 0 + 0 - 1 = - 1 < 0.\)

\( \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right) = \mathop {\lim }\limits_{n \to + \infty } \left[ {{n^2}\left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right)} \right] = \mathop {\lim }\limits_{n \to + \infty } {n^2}.\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = - \infty .\)

b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 2x + 4}}{{x + 2}} = \frac{{{2^2} + 2.2 + 4}}{{2 + 2}} = 3.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\cos \left( {\frac{\pi }{2} - \alpha } \right) = \sin \alpha \].

B. \[sin\left( {\pi + \alpha } \right) = {\rm{sin}}\alpha \].

C. \[\cos \left( {\frac{\pi }{2} + \alpha } \right) = \sin \alpha \].        

D. \[tan\left( {\pi + 2\alpha } \right) = \cot \left( {2\alpha } \right)\].

Lời giải

Chọn A

Câu 2

A. \(\left( {ABC} \right){\rm{//}}\left( {{A_1}{B_1}{C_1}} \right).\)

B. \(A{A_1}{\rm{//}}\left( {BC{C_1}} \right).\)

C. \(AB{\rm{//}}\left( {{A_1}{B_1}{C_1}} \right).\)

D. \(A{A_1}{B_1}B\) là hình chữ nhật.

Lời giải

Chọn D

Câu 3

A. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\].

B. \[D = \mathbb{R}\backslash \left\{ { - \frac{\pi }{6} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\].

C. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{3} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\].

D. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Cắt nhau.
B. Song song.      
C. Chéo nhau.

D. Trùng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\cos 2\alpha = 1 - 2{\sin ^2}\alpha \). 
B. \(\cos 2\alpha = 2{\cos ^2}\alpha - 1\). 
C. \(\sin 4\alpha = 4\sin \alpha \cdot \cos \alpha \).

D. \(\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP