Câu hỏi:

16/04/2024 126

Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M,\,N\) lần lượt là trung điểm của \(A'B'\)\(AB\).

a) Chứng minh \(CB'\,\,{\rm{//}}\,\left( {AMC'} \right)\).

b) Mặt phẳng \(\left( P \right)\) đi qua \(N\) song song với hai cạnh \(AB'\)\(AC'\). Tìm giao tuyến của hai mặt phẳng \(\left( P \right)\)\(\left( {BB'C'} \right)\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

Cho hình lăng trụ tam giác ABC.A'B'C' gọi M, N (ảnh 1)

\(M,\,N\) lần lượt là trung điểm của \(A'B'\)\(AB\) nên \(MN\) là đường trung bình của hình thang \(ABB'A'\). Suy ra \(MN{\rm{//}}AA'\)\(MN\, = \,AA'\) (do \(ABB'A'\) là hình bình hành).

Ta có: \[MN{\rm{//}}AA'\]\[AA'{\rm{//}}CC'\] (tính chất hình lăng trụ).

\[ \Rightarrow MN{\rm{//AA'}}{\rm{.}}\]

Lại có \(AA' = CC'\) (tính chất hình lăng trụ), mà \(MN\, = \,AA'\) nên \[MN = CC'\].

Do đó, tứ giác \[MNCC'\] là hình bình hành. Suy ra \[CN{\rm{//}}MC'.\]

Ta có \[\left\{ \begin{array}{l}CN{\rm{ // }}MC'\\MC' \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow CN{\rm{ // }}\left( {AMC'} \right).\]

Mặt khác ta chứng minh được \[AN{\rm{//}}B'M;\,\,AN = B'M\] nên tứ giác \[ANB'M\] là hình bình hành. Suy ra \[NB'{\rm{//}}MA.\]

Ta có \[\left\{ \begin{array}{l}NB'{\rm{//}}MA\\MA \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow NB'{\rm{//}}\left( {AMC'} \right).\]

Lại có \[\left\{ \begin{array}{l}CN{\rm{//}}\left( {AMC'} \right)\\NB'{\rm{//}}\left( {AMC'} \right)\\CN,NB' \subset \left( {CNB'} \right)\\CN \cap NB' = \left\{ N \right\}\end{array} \right. \Rightarrow \left( {AMC'} \right){\rm{//}}\left( {CNB'} \right).\]

\[CB' \subset \left( {CNB'} \right).\,\,\,{\rm{Suy}}\,\,{\rm{ra}}\,\,\,CB'\,{\rm{//}}\,\left( {AMC'} \right)\].

b)

Cho hình lăng trụ tam giác ABC.A'B'C' gọi M, N (ảnh 2)

Trong mặt phẳng \(\left( {ABB'A'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AB'\), cắt \(BB'\) tại \(E\).

Trong mặt phẳng \(\left( {ABC'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AC'\), cắt \(BC'\) tại \(Q\).

Khi đó, mặt phẳng \(\left( P \right)\) chính là mặt phẳng \(\left( {NQE} \right)\).

\(E \in BB'\) nên \(E \in \left( {BB'C'} \right)\); vì \(Q \in BC'\) nên \(Q \in \left( {BB'C'} \right)\). Do đó, \(EQ \subset \left( {BB'C'} \right)\).

Vậy \[\left( {NQE} \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\] hay \[\left( P \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chọn mệnh đề đúng trong các mệnh đề sau.

Xem đáp án » 16/04/2024 2,744

Câu 2:

Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\] Trong các khẳng định sau, khẳng định nào sai?

Xem đáp án » 16/04/2024 1,553

Câu 3:

Tập xác định của hàm số \[y = \tan \left( {x + \frac{\pi }{3}} \right)\]

Xem đáp án » 16/04/2024 1,329

Câu 4:

Cho tứ diện \(ABCD,\) vị trí tương đối của hai đường thẳng \(AC\)\(BD\)

Xem đáp án » 16/04/2024 1,320

Câu 5:

Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to - 1} \left( {x + 1} \right)\)

Xem đáp án » 16/04/2024 1,031

Câu 6:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 16/04/2024 877

Câu 7:

Cho \(\sin x = \frac{2}{3}\). Giá trị của biểu thức \(P = \sin 2x.\cos x\) bằng

Xem đáp án » 16/04/2024 592

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store