Câu hỏi:
16/04/2024 64Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M,\,N\) lần lượt là trung điểm của \(A'B'\) và \(AB\).
a) Chứng minh \(CB'\,\,{\rm{//}}\,\left( {AMC'} \right)\).
b) Mặt phẳng \(\left( P \right)\) đi qua \(N\) song song với hai cạnh \(AB'\) và \(AC'\). Tìm giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( {BB'C'} \right)\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a)
Vì \(M,\,N\) lần lượt là trung điểm của \(A'B'\) và \(AB\) nên \(MN\) là đường trung bình của hình thang \(ABB'A'\). Suy ra \(MN{\rm{//}}AA'\) và \(MN\, = \,AA'\) (do \(ABB'A'\) là hình bình hành).
Ta có: \[MN{\rm{//}}AA'\] và \[AA'{\rm{//}}CC'\] (tính chất hình lăng trụ).
\[ \Rightarrow MN{\rm{//AA'}}{\rm{.}}\]
Lại có \(AA' = CC'\) (tính chất hình lăng trụ), mà \(MN\, = \,AA'\) nên \[MN = CC'\].
Do đó, tứ giác \[MNCC'\] là hình bình hành. Suy ra \[CN{\rm{//}}MC'.\]
Ta có \[\left\{ \begin{array}{l}CN{\rm{ // }}MC'\\MC' \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow CN{\rm{ // }}\left( {AMC'} \right).\]
Mặt khác ta chứng minh được \[AN{\rm{//}}B'M;\,\,AN = B'M\] nên tứ giác \[ANB'M\] là hình bình hành. Suy ra \[NB'{\rm{//}}MA.\]
Ta có \[\left\{ \begin{array}{l}NB'{\rm{//}}MA\\MA \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow NB'{\rm{//}}\left( {AMC'} \right).\]
Lại có \[\left\{ \begin{array}{l}CN{\rm{//}}\left( {AMC'} \right)\\NB'{\rm{//}}\left( {AMC'} \right)\\CN,NB' \subset \left( {CNB'} \right)\\CN \cap NB' = \left\{ N \right\}\end{array} \right. \Rightarrow \left( {AMC'} \right){\rm{//}}\left( {CNB'} \right).\]
Mà \[CB' \subset \left( {CNB'} \right).\,\,\,{\rm{Suy}}\,\,{\rm{ra}}\,\,\,CB'\,{\rm{//}}\,\left( {AMC'} \right)\].
b)
Trong mặt phẳng \(\left( {ABB'A'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AB'\), cắt \(BB'\) tại \(E\).
Trong mặt phẳng \(\left( {ABC'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AC'\), cắt \(BC'\) tại \(Q\).
Khi đó, mặt phẳng \(\left( P \right)\) chính là mặt phẳng \(\left( {NQE} \right)\).
Vì \(E \in BB'\) nên \(E \in \left( {BB'C'} \right)\); vì \(Q \in BC'\) nên \(Q \in \left( {BB'C'} \right)\). Do đó, \(EQ \subset \left( {BB'C'} \right)\).
Vậy \[\left( {NQE} \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\] hay \[\left( P \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Tập xác định của hàm số \[y = \tan \left( {x + \frac{\pi }{3}} \right)\] là
Câu 4:
Cho tứ diện \(ABCD,\) vị trí tương đối của hai đường thẳng \(AC\) và \(BD\) là
Câu 5:
Câu 7:
Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\] Trong các khẳng định sau, khẳng định nào sai?
về câu hỏi!