Câu hỏi:
16/04/2024 191Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M,\,N\) lần lượt là trung điểm của \(A'B'\) và \(AB\).
a) Chứng minh \(CB'\,\,{\rm{//}}\,\left( {AMC'} \right)\).
b) Mặt phẳng \(\left( P \right)\) đi qua \(N\) song song với hai cạnh \(AB'\) và \(AC'\). Tìm giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( {BB'C'} \right)\).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a)
Vì \(M,\,N\) lần lượt là trung điểm của \(A'B'\) và \(AB\) nên \(MN\) là đường trung bình của hình thang \(ABB'A'\). Suy ra \(MN{\rm{//}}AA'\) và \(MN\, = \,AA'\) (do \(ABB'A'\) là hình bình hành).
Ta có: \[MN{\rm{//}}AA'\] và \[AA'{\rm{//}}CC'\] (tính chất hình lăng trụ).
\[ \Rightarrow MN{\rm{//AA'}}{\rm{.}}\]
Lại có \(AA' = CC'\) (tính chất hình lăng trụ), mà \(MN\, = \,AA'\) nên \[MN = CC'\].
Do đó, tứ giác \[MNCC'\] là hình bình hành. Suy ra \[CN{\rm{//}}MC'.\]
Ta có \[\left\{ \begin{array}{l}CN{\rm{ // }}MC'\\MC' \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow CN{\rm{ // }}\left( {AMC'} \right).\]
Mặt khác ta chứng minh được \[AN{\rm{//}}B'M;\,\,AN = B'M\] nên tứ giác \[ANB'M\] là hình bình hành. Suy ra \[NB'{\rm{//}}MA.\]
Ta có \[\left\{ \begin{array}{l}NB'{\rm{//}}MA\\MA \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow NB'{\rm{//}}\left( {AMC'} \right).\]
Lại có \[\left\{ \begin{array}{l}CN{\rm{//}}\left( {AMC'} \right)\\NB'{\rm{//}}\left( {AMC'} \right)\\CN,NB' \subset \left( {CNB'} \right)\\CN \cap NB' = \left\{ N \right\}\end{array} \right. \Rightarrow \left( {AMC'} \right){\rm{//}}\left( {CNB'} \right).\]
Mà \[CB' \subset \left( {CNB'} \right).\,\,\,{\rm{Suy}}\,\,{\rm{ra}}\,\,\,CB'\,{\rm{//}}\,\left( {AMC'} \right)\].
b)
Trong mặt phẳng \(\left( {ABB'A'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AB'\), cắt \(BB'\) tại \(E\).
Trong mặt phẳng \(\left( {ABC'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AC'\), cắt \(BC'\) tại \(Q\).
Khi đó, mặt phẳng \(\left( P \right)\) chính là mặt phẳng \(\left( {NQE} \right)\).
Vì \(E \in BB'\) nên \(E \in \left( {BB'C'} \right)\); vì \(Q \in BC'\) nên \(Q \in \left( {BB'C'} \right)\). Do đó, \(EQ \subset \left( {BB'C'} \right)\).
Vậy \[\left( {NQE} \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\] hay \[\left( P \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\] Trong các khẳng định sau, khẳng định nào sai?
Câu 3:
Cho tứ diện \(ABCD,\) vị trí tương đối của hai đường thẳng \(AC\) và \(BD\) là
Câu 4:
Tập xác định của hàm số \[y = \tan \left( {x + \frac{\pi }{3}} \right)\] là
Câu 5:
Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to - 1} \left( {x + 1} \right)\) là
Câu 7:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
về câu hỏi!