Câu hỏi:

12/07/2024 1,361

Để hoàn thành hợp đồng đúng hạn, một nhà máy tổ chức cho công nhân làm việc theo hai ca, ca I từ 7h30 đến 15h30 và ca II từ 16h00 đến 22h00. Mỗi ca có số công nhân làm việc tối thiểu là 40 người và tối đa là 120 người. Số công nhân làm việc ở cả hai ca ít nhất là 100 người.

Thu nhập tăng thêm cho mỗi công nhân được tính theo Bảng 2.

Tính số lượng công nhân làm việc cho từng ca sao cho số tiền nhà máy trả cho thu nhập tăng thêm là nhỏ nhất.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x và y lần lượt là số lượng công nhân làm việc cho ca I và ca II (x ℕ, y ℕ).

Số giờ làm ca I là: 15h30 – 7h30 = 8h, số giờ làm ca II là: 22h – 16h = 6h.

Thu nhập tăng thêm là: T = 20.8.x + 25.6.y = 160x + 150y (nghìn đồng).

Số công nhân làm việc ở cả hai ca là: x + y (người).

Vì số công nhân làm việc ở cả hai ca ít nhất là 100 người nên ta có thể viết dạng tổng quát của bài toán quy hoạch tuyến tính sau:

Xét hệ bất phương trình bậc nhất hai ẩn (x, y là các số thực):

Ta cần tìm giá trị nhỏ nhất của biểu thức T = 160x + 150y khi (x; y) thỏa mãn hệ bất phương trình (I’).

Bước 1. Xác định miền nghiệm của hệ bất phương trình (I’).

Miền nghiệm là miền ngũ giác ABCDE với tọa độ các đỉnh A(40; 120), B(120; 120), C(120; 40), D(60; 40), E(40; 60) (hình vẽ).

Bước 2. Tính giá trị của biểu thức T(x; y)  = 160x + 150y tại các đỉnh của ngũ giác ABCDE: 

T(40; 120) = 24 400; T(120; 120) = 37 200; T(120; 40) = 25 200;

T(60; 40) = 15 600; T(40; 60) = 15 400.

Bước 3. Ta đã biết biểu thức T = 160x + 150y đạt giá trị nhỏ nhất tại cặp số thực (x; y) là tọa độ một trong các đỉnh của ngũ giác ABCDE. So sánh năm giá trị thu được của T ở Bước 2, ta được giá trị nhỏ nhất cần tìm là T(40; 60) = 15 400.

Bước 4. Vì 40 và 60 đều là số tự nhiên nên cặp số (x; y) = (40; 60) là nghiệm của bài toán (I).

Vậy cần 40 nhân viên làm việc ca I và 60 nhân viên làm việc ca II thì số tiền nhà máy trả cho thu nhập tăng thêm là nhỏ nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một cơ sở sản xuất đồ gỗ dự định sản xuất ba loại sản phẩm là bàn, ghế và tủ. Định mức sử dụng lao động, chi phí sản xuất và giá bán mỗi sản phẩm mỗi loại ước tính trong Bảng 4:

Biết rằng cơ sở sản xuất đó sử dụng không quá 500 ngày công, số tiền dành cho chi phí sản xuất là không quá 40 triệu đồng và số ghế gấp sáu lần số bàn. Tìm số sản phẩm mỗi loại cần phải sản xuất sao cho tổng doanh thu đạt được cao nhất.

Xem đáp án » 12/07/2024 1,534

Câu 2:

Người ta cần sơn hai loại sản phẩm A, B bằng hai loại sơn: sơn xanh, sơn vàng. Lượng sơn để sơn mỗi loại sản phẩm đó được cho ở Bảng 3 (đơn vị: kg/1 sản phẩm).

Người ta dự định sử dụng không quá 12 kg sơn xanh và không quá 8 kg sơn vàng để sơn tất cả các sản phẩm của hai loại đó. Mỗi sản phẩm loại A lãi 10 triệu đồng và mỗi sản phẩm loại B lãi 8 triệu đồng. Tính số lượng sản phẩm từng loại cần sơn sao cho số tiền lãi thu được là lớn nhất.

Xem đáp án » 12/07/2024 1,532

Câu 3:

Bác Dũng đầu tư không quá 1,2 tỉ đồng vào hai loại cổ phiếu: cổ phiếu A dự kiến chi trả cổ tức bằng tiền với tỉ lệ 5%; cổ phiếu B rủi ro cao dự kiến chi trả cổ tức bằng tiền với tỉ lệ 12%. Giá cổ phiếu A là 30 000 đồng/1 cổ phiếu, giá cổ phiếu B là 40 000 đồng/1 cổ phiếu. Để giảm thiểu rủi ro, bác Dũng quyết định mua số lượng cổ phiếu B không quá 10 000 cổ phiếu. Hỏi bác Dũng nên đầu tư mỗi loại bao nhiêu cổ phiếu để lợi nhuận thu được là lớn nhất?

Xem đáp án » 12/07/2024 1,513

Câu 4:

Một kho hàng có hai loại hàng hoá A và B. Người ta dùng hai loại xe tải để chở hàng từ kho đó. Mỗi chiếc xe tải loại thứ nhất chi phí hết 6 triệu đồng chở được 4 tấn hàng hoá A và 3 tấn hàng hoá B. Mỗi chiếc xe tải loại thứ hai chi phí hết 4 triệu đồng chở được 3 tấn hàng hoá A và 2 tấn hàng hoá B. Người ta cần chuyển đi từ kho đó ít nhất 21 tấn hàng hoá A và 15 tấn hàng hoá B. Hỏi phải dùng bao nhiêu xe tải mỗi loại để chi phí vận chuyển là ít nhất?

Xem đáp án » 12/07/2024 1,206

Câu 5:

Người ta cần đóng 20 kg hàng hoá vào hai loại hộp. Mỗi chiếc hộp loại I đựng được 2 kg hàng hoá. Mỗi chiếc hộp loại II đựng được 3 kg hàng hoá. Hãy lập mô hình toán học của bài toán trên sao cho số hộp cần dùng là nhỏ nhất.

Xem đáp án » 12/07/2024 720

Câu 6:

Một công ty kinh doanh đồ uống sản xuất hai loại nước sinh tố theo công thức sau:

Trong 1 l nước sinh tố loại thứ nhất có 0,7 l nước anh đào, 0,3 l nước cam và giá bán là 24 000 đồng/lít.

Trong 1 l nước sinh tố loại thứ hai có 0,4 l nước anh đào, 0,6 l nước cam và giá bán là 18 000 đồng/lít.

Công ty có 120 l nước anh đào và 150 l nước cam.

Hỏi công ty phải sản xuất bao nhiêu lít nước sinh tố mỗi loại sao cho tổng số tiền công ty thu được là nhiều nhất?

Xem đáp án » 12/07/2024 654

Bình luận


Bình luận