Câu hỏi:
12/07/2024 773Bác Dũng đầu tư không quá 1,2 tỉ đồng vào hai loại cổ phiếu: cổ phiếu A dự kiến chi trả cổ tức bằng tiền với tỉ lệ 5%; cổ phiếu B rủi ro cao dự kiến chi trả cổ tức bằng tiền với tỉ lệ 12%. Giá cổ phiếu A là 30 000 đồng/1 cổ phiếu, giá cổ phiếu B là 40 000 đồng/1 cổ phiếu. Để giảm thiểu rủi ro, bác Dũng quyết định mua số lượng cổ phiếu B không quá 10 000 cổ phiếu. Hỏi bác Dũng nên đầu tư mỗi loại bao nhiêu cổ phiếu để lợi nhuận thu được là lớn nhất?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi bác Dũng cần mua x cổ phiếu A và y cổ phiếu B (x ∈ ℕ, y ∈ ℕ).
Khi đó, số tiền bác Dũng cần chi ra là: 30 000x + 40 000y (đồng).
Vì số tiền bác Dũng đầu tư không quá 1,2 tỉ đồng nên ta có:
30 000x + 40 000y ≤ 1 200 000 000 hay 3x + 4y ≤ 120 000.
Vì số lượng cổ phiếu B được mua không quá 10 000 cổ phiếu nên y ≤ 10 000.
Một cổ phiếu A sẽ nhận được số tiền chi trả cổ tức là: 5% . 30 000 = 1 500 (đồng).
Một cổ phiếu B sẽ nhận được số tiền chi trả cổ tức là: 12% . 40 000 = 4 800 (đồng).
Do đó, bác Dũng nhận được số tiền chi trả cổ tức là: T = 1 500x + 4 800y (đồng).
Vì vậy, yêu cầu của bác Dũng có thể viết ở dạng tổng quát của bài toán quy hoạch tuyến tính sau:
Xét hệ bất phương trình bậc nhất hai ẩn (x, y là các số thực):
Ta cần tìm giá trị lớn nhất của biểu thức T = 1 500x + 4 800y khi (x; y) thỏa mãn hệ bất phương trình (I’).
Bước 1. Xác định miền nghiệm của hệ bất phương trình (I’).
Miền nghiệm là miền tứ giác OABC với tọa độ các đỉnh O(0; 0), A(0; 10 000), C(40 000; 0) (hình vẽ).
Bước 2. Tính giá trị của biểu thức T(x; y) = 1 500x + 4 800y tại các đỉnh của tứ giác này:
T(0; 0) = 0; T(0; 10 000) = 48 000 000;
T(40 000; 0) = 60 000 000.
Bước 3. Ta đã biết biểu thức T = 1 500x + 4 800y đạt giá trị lớn nhất tại cặp số thực (x; y) là tọa độ một trong các đỉnh của tứ giác OABC. So sánh bốn giá trị thu được của T ở Bước 2, kết hợp điều kiện x và y là các số tự nhiên, ta được giá trị lớn nhất cần tìm là T(40 000; 0) = 60 000 000.
Vậy bác Dũng nên đầu tư loại A 40 000 cổ phiếu để lợi nhuận thu được là lớn nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta cần sơn hai loại sản phẩm A, B bằng hai loại sơn: sơn xanh, sơn vàng. Lượng sơn để sơn mỗi loại sản phẩm đó được cho ở Bảng 3 (đơn vị: kg/1 sản phẩm).
Người ta dự định sử dụng không quá 12 kg sơn xanh và không quá 8 kg sơn vàng để sơn tất cả các sản phẩm của hai loại đó. Mỗi sản phẩm loại A lãi 10 triệu đồng và mỗi sản phẩm loại B lãi 8 triệu đồng. Tính số lượng sản phẩm từng loại cần sơn sao cho số tiền lãi thu được là lớn nhất.
Câu 2:
Một cơ sở sản xuất đồ gỗ dự định sản xuất ba loại sản phẩm là bàn, ghế và tủ. Định mức sử dụng lao động, chi phí sản xuất và giá bán mỗi sản phẩm mỗi loại ước tính trong Bảng 4:
Biết rằng cơ sở sản xuất đó sử dụng không quá 500 ngày công, số tiền dành cho chi phí sản xuất là không quá 40 triệu đồng và số ghế gấp sáu lần số bàn. Tìm số sản phẩm mỗi loại cần phải sản xuất sao cho tổng doanh thu đạt được cao nhất.
Câu 3:
Để hoàn thành hợp đồng đúng hạn, một nhà máy tổ chức cho công nhân làm việc theo hai ca, ca I từ 7h30 đến 15h30 và ca II từ 16h00 đến 22h00. Mỗi ca có số công nhân làm việc tối thiểu là 40 người và tối đa là 120 người. Số công nhân làm việc ở cả hai ca ít nhất là 100 người.
Thu nhập tăng thêm cho mỗi công nhân được tính theo Bảng 2.
Tính số lượng công nhân làm việc cho từng ca sao cho số tiền nhà máy trả cho thu nhập tăng thêm là nhỏ nhất.
Câu 4:
Một kho hàng có hai loại hàng hoá A và B. Người ta dùng hai loại xe tải để chở hàng từ kho đó. Mỗi chiếc xe tải loại thứ nhất chi phí hết 6 triệu đồng chở được 4 tấn hàng hoá A và 3 tấn hàng hoá B. Mỗi chiếc xe tải loại thứ hai chi phí hết 4 triệu đồng chở được 3 tấn hàng hoá A và 2 tấn hàng hoá B. Người ta cần chuyển đi từ kho đó ít nhất 21 tấn hàng hoá A và 15 tấn hàng hoá B. Hỏi phải dùng bao nhiêu xe tải mỗi loại để chi phí vận chuyển là ít nhất?
Câu 5:
Nhu cầu canxi tối thiểu cho một người đang độ tuổi trưởng thành trong một ngày là 1 305 mg. Trong 1 lạng (100 g) đậu nành có 165 mg canxi, 1 lạng thịt có 15 mg canxi (Nguồn: https://hongngochospital.vn). Gia đình chị Thảo có bốn người đang độ tuổi trưởng thành, dự định ăn một ngày tối thiểu 3 lạng đậu nành và 7 lạng thịt, nhưng ăn không quá 4 kg cả đậu nành và thịt. Giá tiền đậu nành là 50 000 đồng/kg, giá tiền thịt là 85 000 đồng 1 kg. Hỏi gia đình chị Thảo cần mua bao nhiêu lạng mỗi loại đậu nành và thịt sao cho chi phí để mua hai loại thực phẩm đó là nhỏ nhất?
Câu 6:
Người ta cần đóng 20 kg hàng hoá vào hai loại hộp. Mỗi chiếc hộp loại I đựng được 2 kg hàng hoá. Mỗi chiếc hộp loại II đựng được 3 kg hàng hoá. Hãy lập mô hình toán học của bài toán trên sao cho số hộp cần dùng là nhỏ nhất.
về câu hỏi!