Câu hỏi:

05/03/2020 334

Cho số phức z=1+i. Biết rằng tồn tại các số phức z1=a+5i, z2=b

(trong đó a,b, b>1) thỏa mãn 3z-z1=3z-z2=z1-z2. 

Tính b-a.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Đặt  lần lượt là các điểm biểu thị cho các số phức z,z1,z2 

Vậy  

Từ giả thiết cho ta tam giác MNP cân tại M có  

 

 (nhân chéo vế với vế của hai phương trình).

Tìm được Thay vào (1) thì thấy chỉ có  thỏa mãn. Lúc này do 

Do  

Vậy 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho số phức z=(1+i)2(1+2i).Số phức z có phần ảo là

Xem đáp án » 05/03/2020 17,826

Câu 2:

Cho w là số phức thay đổi thỏa mãn w=2.

Trong mặt phẳng phức, các điểm biểu diễn số phức z=3w+1-2i chạy trên đường nào?

Xem đáp án » 04/03/2020 4,872

Câu 3:

Cho các số phức z, w thỏa mãn z-5+3i=3, iw+4+2i=2 

Tìm giá trị lớn nhất của biểu thức T=3iz+2w 

Xem đáp án » 05/03/2020 3,628

Câu 4:

Cho số phức z=2+4i. Tính hiệu phần thực và phần ảo của z.

Xem đáp án » 04/03/2021 3,365

Câu 5:

Có bao nhiêu số phức z thỏa mãn điều kiện z2=z2+z¯

Xem đáp án » 05/03/2020 2,693

Câu 6:

Điểm nào trong hình vẽ dưới đây là điểm biễu diễn của số phức z=(1+i)(2-i)?

Xem đáp án » 06/03/2021 2,305

Câu 7:

Điểm M trong hình vẽ dưới đây biểu thị cho số phức

Xem đáp án » 22/02/2020 2,041
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua